mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-12 12:47:21 +00:00
[plugin] add 3d parallel plugin (#4295)
* [amp] add mixed precision optimizer * [plugin] add 3d parallel plugin * [booster] support pipeline * [plugin] 3d parallel plugin support clip grad norm * [shardformer] fix sharder and add plugin test * [plugin] rename 3d parallel plugin * [ci] support testmon core pkg change detection (#4305) * [hotfix] debug testmon * [hotfix] fix llama * [hotfix] fix p2p bugs * [hotfix] fix requirements
This commit is contained in:
316
colossalai/booster/plugin/hybrid_parallel_plugin.py
Normal file
316
colossalai/booster/plugin/hybrid_parallel_plugin.py
Normal file
@@ -0,0 +1,316 @@
|
||||
import random
|
||||
from contextlib import nullcontext
|
||||
from typing import Any, Callable, Iterator, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.distributed import ProcessGroup
|
||||
from torch.nn import Module
|
||||
from torch.optim import Optimizer
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
|
||||
from colossalai.amp.naive_amp.mixed_precision_optimizer import MixedPrecisionOptimizer
|
||||
from colossalai.checkpoint_io import CheckpointIO
|
||||
from colossalai.cluster import ProcessGroupMesh
|
||||
from colossalai.interface import ModelWrapper, OptimizerWrapper
|
||||
from colossalai.pipeline.schedule import OneForwardOneBackwardSchedule
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer import ShardConfig, ShardFormer
|
||||
from colossalai.zero.low_level import LowLevelZeroOptimizer
|
||||
|
||||
from .pp_plugin_base import PipelinePluginBase
|
||||
|
||||
DP_AXIS, PP_AXIS, TP_AXIS = 0, 1, 2
|
||||
|
||||
|
||||
class HybridParallelModule(ModelWrapper):
|
||||
|
||||
def __init__(self, module: Module, precision: str, shard_config: ShardConfig, dp_group: ProcessGroup) -> None:
|
||||
self.stage_manager = shard_config.pipeline_stage_manager
|
||||
self.dp_group = dp_group
|
||||
shardformer = ShardFormer(shard_config)
|
||||
module, self.shared_params = shardformer.optimize(module)
|
||||
# TODO(ver217): add input type cast
|
||||
self.shared_param_process_groups = []
|
||||
for shared_param in self.shared_params:
|
||||
if len(shared_param) > 0:
|
||||
self.stage_manager.init_process_group_by_stages(list(shared_param.keys()))
|
||||
if precision == 'fp16':
|
||||
module = module.half().cuda()
|
||||
elif precision == 'bf16':
|
||||
module = module.to(dtype=torch.bfloat16).cuda()
|
||||
# TODO(ver217): support TP+DP
|
||||
super().__init__(module)
|
||||
|
||||
def sync_shared_params(self):
|
||||
for shared_param, group in zip(self.shared_params, self.shared_param_process_groups):
|
||||
param = shared_param[self.stage_manager.stage]
|
||||
dist.all_reduce(param.grad, group=group)
|
||||
|
||||
def no_sync(self) -> Iterator[None]:
|
||||
# no sync grads across data parallel
|
||||
return nullcontext()
|
||||
|
||||
def sync_grads(self):
|
||||
# sync grad across data parallel
|
||||
if self.dp_group.size() == 1:
|
||||
return
|
||||
for p in self.module.parameters():
|
||||
if p.grad is not None:
|
||||
dist.all_reduce(p.grad, group=self.dp_group)
|
||||
|
||||
|
||||
def init_pipeline_optimizer(optim: Optimizer, model: Module):
|
||||
params = set(model.parameters())
|
||||
new_param_groups = []
|
||||
for group in optim.param_groups:
|
||||
params = [p for p in group['params'] if p in params]
|
||||
new_param_groups.append({**group, 'params': params})
|
||||
optim.__setstate__({'param_groups': new_param_groups})
|
||||
|
||||
|
||||
class HybridParallelOptimizer(MixedPrecisionOptimizer):
|
||||
|
||||
def __init__(self,
|
||||
optim: Optimizer,
|
||||
model: Module,
|
||||
use_pipeline: bool,
|
||||
precision: str = 'fp16',
|
||||
initial_scale: float = 2**16,
|
||||
min_scale: float = 1,
|
||||
growth_factor: float = 2,
|
||||
backoff_factor: float = 0.5,
|
||||
growth_interval: int = 1000,
|
||||
hysteresis: int = 2,
|
||||
max_scale: float = 2**32,
|
||||
max_norm: float = 0):
|
||||
if use_pipeline:
|
||||
init_pipeline_optimizer(optim, model)
|
||||
super().__init__(optim, precision, initial_scale, min_scale, growth_factor, backoff_factor, growth_interval,
|
||||
hysteresis, max_scale, max_norm)
|
||||
|
||||
|
||||
class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer: Optimizer,
|
||||
model: Module,
|
||||
use_pipeline: bool,
|
||||
initial_scale: int = 2**16, # grad scaler config
|
||||
min_scale: int = 1,
|
||||
growth_factor: float = 2.,
|
||||
backoff_factor: float = .5,
|
||||
growth_interval: int = 2000,
|
||||
hysteresis: int = 2,
|
||||
max_scale: int = 2**24,
|
||||
clip_grad_norm: float = 0.0, # grad clipping
|
||||
verbose: bool = False,
|
||||
reduce_bucket_size: int = 1024 * 1024, # communication
|
||||
communication_dtype: Optional[torch.dtype] = None,
|
||||
overlap_communication: bool = True,
|
||||
partition_grad: bool = False, # stage 2 flag
|
||||
cpu_offload: bool = False, # cpu offload
|
||||
dp_process_group: Optional[ProcessGroup] = None, # the dp pg for comm
|
||||
tp_process_group: Optional[ProcessGroup] = None, # if using tp
|
||||
forced_dtype: Optional[torch.dtype] = None):
|
||||
if use_pipeline:
|
||||
init_pipeline_optimizer(optimizer, model)
|
||||
super().__init__(optimizer, initial_scale, min_scale, growth_factor, backoff_factor, growth_interval,
|
||||
hysteresis, max_scale, clip_grad_norm, verbose, reduce_bucket_size, communication_dtype,
|
||||
overlap_communication, partition_grad, cpu_offload, dp_process_group, tp_process_group,
|
||||
forced_dtype)
|
||||
|
||||
|
||||
class HybridParallelPlugin(PipelinePluginBase):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tp_size: int,
|
||||
pp_size: int,
|
||||
precision: str = 'fp16',
|
||||
zero_stage: int = 0,
|
||||
cpu_offload: bool = False,
|
||||
enable_fused_normalization: bool = False,
|
||||
num_microbatches: Optional[int] = None,
|
||||
initial_scale: float = 2**16,
|
||||
min_scale: float = 1,
|
||||
growth_factor: float = 2,
|
||||
backoff_factor: float = 0.5,
|
||||
growth_interval: int = 1000,
|
||||
hysteresis: int = 2,
|
||||
max_scale: float = 2**32,
|
||||
max_norm: float = 0,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
assert dist.get_world_size() % (
|
||||
tp_size * pp_size
|
||||
) == 0, f'world size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}'
|
||||
# TODO(ver217): support zero
|
||||
assert zero_stage == 0, 'zero is not support yet'
|
||||
self.tp_size = tp_size
|
||||
self.pp_size = pp_size
|
||||
self.dp_size = dist.get_world_size() // (tp_size * pp_size)
|
||||
self.precision = precision
|
||||
self.zero_stage = zero_stage
|
||||
self.cpu_offload = cpu_offload
|
||||
self.enable_fused_normalization = enable_fused_normalization
|
||||
self.pg_mesh = ProcessGroupMesh(self.dp_size, self.pp_size, self.tp_size)
|
||||
self.stage_manager = None
|
||||
self.schedule = None
|
||||
assert zero_stage in (0, 1, 2)
|
||||
if self.pp_size > 1:
|
||||
assert num_microbatches is not None, 'num_microbatches must be specified when using pipeline parallelism'
|
||||
assert self.zero_stage <= 1, 'zero stage must be 0 or 1 when using pipeline parallelism'
|
||||
self.stage_manager = PipelineStageManager(self.pg_mesh, PP_AXIS)
|
||||
self.schedule = OneForwardOneBackwardSchedule(num_microbatches, self.stage_manager)
|
||||
self.tp_group = self.pg_mesh.get_group_along_axis(TP_AXIS)
|
||||
self.dp_group = self.pg_mesh.get_group_along_axis(DP_AXIS)
|
||||
self.shard_config = ShardConfig(tensor_parallel_process_group=self.tp_group,
|
||||
pipeline_stage_manager=self.stage_manager,
|
||||
enable_tensor_parallelism=self.tp_size > 1,
|
||||
enable_fused_normalization=self.enable_fused_normalization)
|
||||
self.amp_config = dict(
|
||||
initial_scale=initial_scale,
|
||||
growth_factor=growth_factor,
|
||||
backoff_factor=backoff_factor,
|
||||
growth_interval=growth_interval,
|
||||
hysteresis=hysteresis,
|
||||
min_scale=min_scale,
|
||||
max_scale=max_scale,
|
||||
)
|
||||
self.max_norm = max_norm
|
||||
|
||||
@property
|
||||
def enable_pipeline_parallelism(self) -> bool:
|
||||
return self.pp_size > 1
|
||||
|
||||
def supported_devices(self) -> List[str]:
|
||||
return ['cuda']
|
||||
|
||||
def supported_precisions(self) -> List[str]:
|
||||
return ['fp16', 'bf16']
|
||||
|
||||
def control_device(self) -> bool:
|
||||
return True
|
||||
|
||||
def control_precision(self) -> bool:
|
||||
return True
|
||||
|
||||
def support_no_sync(self) -> bool:
|
||||
return False
|
||||
|
||||
def control_checkpoint_io(self) -> bool:
|
||||
return True
|
||||
|
||||
def configure(
|
||||
self,
|
||||
model: Module,
|
||||
optimizer: Optional[Optimizer] = None,
|
||||
criterion: Optional[Callable] = None,
|
||||
dataloader: Optional[DataLoader] = None,
|
||||
lr_scheduler: Optional[LRScheduler] = None,
|
||||
) -> Tuple[Module, OptimizerWrapper, Callable, DataLoader, LRScheduler]:
|
||||
if not isinstance(model, ModelWrapper):
|
||||
model = HybridParallelModule(model, self.precision, self.shard_config, self.dp_group)
|
||||
if optimizer is not None and not isinstance(optimizer, OptimizerWrapper):
|
||||
if self.zero_stage == 0:
|
||||
optimizer = HybridParallelOptimizer(optimizer,
|
||||
model,
|
||||
use_pipeline=self.enable_pipeline_parallelism,
|
||||
precision=self.precision,
|
||||
max_norm=self.max_norm,
|
||||
**self.amp_config)
|
||||
else:
|
||||
optimizer = HybridParallelZeroOptimizer(optimizer,
|
||||
model,
|
||||
use_pipeline=self.enable_pipeline_parallelism,
|
||||
partition_grad=(self.zero_stage == 2),
|
||||
cpu_offload=self.cpu_offload,
|
||||
dp_process_group=self.dp_group,
|
||||
tp_process_group=self.tp_group,
|
||||
verbose=True,
|
||||
clip_grad_norm=self.max_norm,
|
||||
**self.amp_config)
|
||||
return model, optimizer, criterion, dataloader, lr_scheduler
|
||||
|
||||
def execute_pipeline(self,
|
||||
data_iter: Iterator,
|
||||
model: HybridParallelModule,
|
||||
criterion: Callable[[Any, Any], torch.Tensor],
|
||||
optimizer: Union[HybridParallelOptimizer, HybridParallelZeroOptimizer],
|
||||
return_loss: bool = True,
|
||||
return_outputs: bool = False) -> dict:
|
||||
assert self.enable_pipeline_parallelism, 'pipeline parallelism is not enabled'
|
||||
# return loss or outputs if needed
|
||||
ctx = optimizer.no_sync() if isinstance(optimizer, HybridParallelZeroOptimizer) else model.no_sync()
|
||||
with ctx:
|
||||
outputs = self.schedule.forward_backward_step(model, optimizer, data_iter, criterion, return_loss,
|
||||
return_outputs)
|
||||
# model.sync_shared_params()
|
||||
if isinstance(optimizer, HybridParallelZeroOptimizer):
|
||||
optimizer.sync_grad()
|
||||
else:
|
||||
model.sync_grads()
|
||||
return outputs
|
||||
|
||||
def prepare_dataloader(self,
|
||||
dataset,
|
||||
batch_size,
|
||||
shuffle=False,
|
||||
seed=1024,
|
||||
drop_last=False,
|
||||
pin_memory=False,
|
||||
num_workers=0,
|
||||
**kwargs):
|
||||
r"""
|
||||
Prepare a dataloader for distributed training. The dataloader will be wrapped by
|
||||
`torch.utils.data.DataLoader` and `torch.utils.data.DistributedSampler`.
|
||||
|
||||
|
||||
Args:
|
||||
dataset (`torch.utils.data.Dataset`): The dataset to be loaded.
|
||||
shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False.
|
||||
seed (int, optional): Random worker seed for sampling, defaults to 1024.
|
||||
add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True.
|
||||
drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size
|
||||
is not divisible by the batch size. If False and the size of dataset is not divisible by
|
||||
the batch size, then the last batch will be smaller, defaults to False.
|
||||
pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False.
|
||||
num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0.
|
||||
kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in
|
||||
`DataLoader <https://pytorch.org/docs/stable/_modules/torch/utils/data/dataloader.html#DataLoader>`_.
|
||||
|
||||
Returns:
|
||||
:class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing.
|
||||
"""
|
||||
_kwargs = kwargs.copy()
|
||||
sampler = DistributedSampler(dataset,
|
||||
num_replicas=self.pg_mesh.size(DP_AXIS),
|
||||
rank=self.pg_mesh.coordinate(DP_AXIS),
|
||||
shuffle=shuffle)
|
||||
|
||||
# Deterministic dataloader
|
||||
def seed_worker(worker_id):
|
||||
worker_seed = seed
|
||||
np.random.seed(worker_seed)
|
||||
torch.manual_seed(worker_seed)
|
||||
random.seed(worker_seed)
|
||||
|
||||
return DataLoader(dataset,
|
||||
batch_size=batch_size,
|
||||
sampler=sampler,
|
||||
worker_init_fn=seed_worker,
|
||||
drop_last=drop_last,
|
||||
pin_memory=pin_memory,
|
||||
num_workers=num_workers,
|
||||
**_kwargs)
|
||||
|
||||
def get_checkpoint_io(self) -> CheckpointIO:
|
||||
return None
|
||||
|
||||
def no_sync(self, model: Module) -> Iterator[None]:
|
||||
raise NotImplementedError
|
Reference in New Issue
Block a user