[plugin] add 3d parallel plugin (#4295)

* [amp] add mixed precision optimizer

* [plugin] add 3d parallel plugin

* [booster] support pipeline

* [plugin] 3d parallel plugin support clip grad norm

* [shardformer] fix sharder and add plugin test

* [plugin] rename 3d parallel plugin

* [ci] support testmon core pkg change detection (#4305)

* [hotfix] debug testmon

* [hotfix] fix llama

* [hotfix] fix p2p bugs

* [hotfix] fix requirements
This commit is contained in:
Hongxin Liu
2023-07-26 00:53:57 +08:00
parent b3f5d7a3ba
commit 261eab02fb
9 changed files with 621 additions and 24 deletions

View File

@@ -0,0 +1,99 @@
from contextlib import nullcontext
from typing import Optional
import torch
import torch.distributed as dist
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import HybridParallelPlugin
from colossalai.fx import is_compatible_with_meta
from colossalai.lazy.lazy_init import LazyInitContext
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from tests.kit.model_zoo import model_zoo
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]:
try:
if init_method == 'lazy':
ctx = LazyInitContext()
else:
ctx = nullcontext()
plugin = HybridParallelPlugin(tp_size=2, pp_size=2, num_microbatches=4, precision='bf16')
booster = Booster(plugin=plugin)
with ctx:
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to('cuda').repeat(4, 1) if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v
for k, v in data.items()
}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
data_iter = iter([data])
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
output_key = list(outputs.keys())[0]
loss = criterion(outputs[output_key])
return loss
booster.execute_pipeline(data_iter, model, _criterion, optimizer, return_loss=True, return_outputs=False)
optimizer.step()
except Exception as e:
return repr(e)
@parameterize('init_method', ['none', 'lazy'])
def check_3d_plugin(init_method: str = 'none', early_stop: bool = True):
"""check gemini plugin over model zoo
Args:
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
"""
is_support_meta = is_compatible_with_meta()
if not is_support_meta and init_method == 'lazy':
return
passed_models = []
failed_info = {} # (model_name, error) pair
# TODO(ver217): add more models
for name, (model_fn, data_gen_fn, output_transform_fn, _,
_) in model_zoo.get_sub_registry('transformers_llama_for_casual_lm').items():
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn)
torch.cuda.empty_cache()
if err is None:
passed_models.append(name)
else:
failed_info[name] = err
if early_stop:
break
if dist.get_rank() == 0:
print(f'Init method: {init_method}')
print(f'Passed models({len(passed_models)}): {passed_models}\n\n')
print(f'Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n')
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
def run_dist(rank, world_size, port, early_stop: bool = True):
# init dist env
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
check_3d_plugin(early_stop=early_stop)
@rerun_if_address_is_in_use()
def test_gemini_plugin(early_stop: bool = True):
spawn(run_dist, 4, early_stop=early_stop)
if __name__ == '__main__':
test_gemini_plugin(early_stop=False)