diff --git a/colossalai/booster/plugin/gemini_plugin.py b/colossalai/booster/plugin/gemini_plugin.py index 0f5ba6e9a..54d815ce7 100644 --- a/colossalai/booster/plugin/gemini_plugin.py +++ b/colossalai/booster/plugin/gemini_plugin.py @@ -1,13 +1,11 @@ import gc import logging import os -import warnings from pathlib import Path -from typing import Callable, Iterator, List, Optional, Tuple, Union +from typing import Callable, Iterator, List, Optional, Tuple import torch import torch.nn as nn -from torch import Tensor from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler as LRScheduler from torch.utils.data import DataLoader @@ -16,7 +14,6 @@ from colossalai.checkpoint_io import CheckpointIndexFile, CheckpointIO, GeneralC from colossalai.checkpoint_io.utils import ( get_model_base_filenames, get_optimizer_base_filenames, - get_shard_filename, load_shard_state_dict, save_state_dict, save_state_dict_shards, @@ -24,8 +21,7 @@ from colossalai.checkpoint_io.utils import ( from colossalai.cluster import DistCoordinator from colossalai.interface import ModelWrapper, OptimizerWrapper from colossalai.utils import get_current_device -from colossalai.zero import GeminiDDP, zero_model_wrapper, zero_optim_wrapper -from colossalai.zero.gemini import ZeroOptimizer +from colossalai.zero import GeminiDDP, GeminiOptimizer from colossalai.zero.gemini.memory_tracer import MemStats from .dp_plugin_base import DPPluginBase @@ -132,11 +128,7 @@ class GeminiCheckpointIO(GeneralCheckpointIO): As there is communication when getting state dict, this must be called on all processes. """ - # If optimizer is wrapped, unwrap it. - if isinstance(optimizer, OptimizerWrapper): - optimizer = optimizer.unwrap() - - assert isinstance(optimizer, ZeroOptimizer) + assert isinstance(optimizer, GeminiOptimizer) if os.path.isfile(checkpoint): logging.error(f"Provided path ({checkpoint}) should be a directory, not a file") @@ -183,11 +175,7 @@ class GeminiCheckpointIO(GeneralCheckpointIO): if not os.path.isfile(checkpoint_index_file): logging.error(f"Provided path ({checkpoint_index_file}) should be a file") - # If optimizer is wrapped, unwrap it. - if isinstance(optimizer, OptimizerWrapper): - optimizer = optimizer.unwrap() - - assert isinstance(optimizer, ZeroOptimizer) + assert isinstance(optimizer, GeminiOptimizer) # Read checkpoint index file. ckpt_index_file = CheckpointIndexFile.from_file(checkpoint_index_file) @@ -220,47 +208,6 @@ class GeminiCheckpointIO(GeneralCheckpointIO): super().save_lr_scheduler(lr_scheduler, checkpoint) -class GeminiModel(ModelWrapper): - - def __init__(self, module: nn.Module, gemini_config: dict, verbose: bool = False) -> None: - super().__init__(module) - self.module = zero_model_wrapper(module, zero_stage=3, gemini_config=gemini_config, verbose=verbose) - - def unwrap(self): - # as save/load state dict is coupled with the GeminiDDP, we only return GeminiDDP model - return self.module - - -class GeminiOptimizer(OptimizerWrapper): - - def __init__(self, - module: GeminiDDP, - optimizer: Optimizer, - zero_optim_config: dict, - optim_kwargs: dict, - verbose: bool = False) -> None: - optimizer = zero_optim_wrapper(module, - optimizer, - optim_config=zero_optim_config, - **optim_kwargs, - verbose=verbose) - super().__init__(optimizer) - - def backward(self, loss: Tensor, *args, **kwargs): - self.optim.backward(loss) - - def clip_grad_by_norm(self, - max_norm: Union[float, int], - norm_type: Union[float, int] = 2, - error_if_nonfinite: bool = False, - *args, - **kwargs) -> Tensor: - warnings.warn(f'Gemini controls grad clipping by itself, so you should not use clip_grad_by_norm') - - def clip_grad_by_value(self, clip_value: float, *args, **kwargs) -> None: - raise NotImplementedError('Gemini does not support clip_grad_by_value') - - class GeminiPlugin(DPPluginBase): """ Plugin for Gemini. @@ -277,8 +224,20 @@ class GeminiPlugin(DPPluginBase): >>> model, optimizer, train_dataloader, criterion = booster.boost(model, optimizer, train_dataloader, criterion) Args: - device (torch.device): device to place the model. - placement_policy (str, optional): "cpu", "cuda", "auto". Defaults to "cpu". + chunk_config_dict (dict, optional): chunk configuration dictionary. + chunk_init_device (torch.device, optional): device to initialize the chunk. + placement_policy (str, optional): "static" and "auto". Defaults to "static". + shard_param_frac (float, optional): fraction of parameters to be sharded. Only for "static" placement. + If `shard_param_frac` is 1.0, it's equal to zero-3. If `shard_param_frac` is 0.0, it's equal to zero-2. Defaults to 1.0. + offload_optim_frac (float, optional): fraction of optimizer states to be offloaded. Only for "static" placement. + If `shard_param_frac` is 1.0 and `offload_optim_frac` is 0.0, it's equal to old "cuda" placement. Defaults to 0.0. + offload_param_frac (float, optional): fraction of parameters to be offloaded. Only for "static" placement. + For efficiency, this argument is useful only when `shard_param_frac` is 1.0 and `offload_optim_frac` is 1.0. + If `shard_param_frac` is 1.0, `offload_optim_frac` is 1.0 and `offload_param_frac` is 1.0, it's equal to old "cpu" placement. + When using static placement, we recommend users to tune `shard_param_frac` first and then `offload_optim_frac`. + Defaults to 0.0. + warmup_non_model_data_ratio (float, optional): ratio of expected non-model data memory during warmup. Only for "auto" placement. Defaults to 0.8. + steady_cuda_cap_ratio (float, optional): ratio of allowed cuda capacity for model data during steady state. Only for "auto" placement. Defaults to 0.9. precision (str, optional): precision. Support 'fp16' and 'bf16'. Defaults to 'fp16'. pin_memory (bool, optional): use pin memory on CPU. Defaults to False. force_outputs_fp32 (bool, optional): force outputs are fp32. Defaults to False. @@ -310,8 +269,14 @@ class GeminiPlugin(DPPluginBase): def __init__( self, - device: Optional[torch.device] = None, - placement_policy: str = "cpu", + chunk_config_dict: Optional[dict] = None, + chunk_init_device: Optional[torch.device] = None, + placement_policy: str = "static", + shard_param_frac: float = 1.0, # only for static placement + offload_optim_frac: float = 0.0, # only for static placement + offload_param_frac: float = 0.0, # only for static placement + warmup_non_model_data_ratio: float = 0.8, # only for auto placement + steady_cuda_cap_ratio: float = 0.9, # only for auto placement precision: str = "fp16", pin_memory: bool = False, force_outputs_fp32: bool = False, @@ -335,8 +300,14 @@ class GeminiPlugin(DPPluginBase): super().__init__() assert precision in SUPPORTED_PRECISION, f'precision {precision} is not supported' self.gemini_config = dict( - device=(device or get_current_device()), + chunk_config_dict=chunk_config_dict, + chunk_init_device=(chunk_init_device or get_current_device()), placement_policy=placement_policy, + shard_param_frac=shard_param_frac, + offload_optim_frac=offload_optim_frac, + offload_param_frac=offload_param_frac, + warmup_non_model_data_ratio=warmup_non_model_data_ratio, + steady_cuda_cap_ratio=steady_cuda_cap_ratio, pin_memory=pin_memory, force_outputs_fp32=force_outputs_fp32, strict_ddp_mode=strict_ddp_mode, @@ -393,12 +364,15 @@ class GeminiPlugin(DPPluginBase): # model = nn.SyncBatchNorm.convert_sync_batchnorm(model, None) # wrap the model with Gemini - model = GeminiModel(model, self.gemini_config, self.verbose) + model = GeminiDDP(model, **self.gemini_config, verbose=self.verbose) if optimizer is not None and \ not isinstance(optimizer, OptimizerWrapper): - optimizer = GeminiOptimizer(model.unwrap(), optimizer, self.zero_optim_config, self.optim_kwargs, - self.verbose) + optimizer = GeminiOptimizer(optimizer, + model.unwrap(), + **self.zero_optim_config, + **self.optim_kwargs, + verbose=self.verbose) return model, optimizer, criterion, dataloader, lr_scheduler diff --git a/colossalai/tensor/colo_parameter.py b/colossalai/tensor/colo_parameter.py index b384579fe..076661a08 100644 --- a/colossalai/tensor/colo_parameter.py +++ b/colossalai/tensor/colo_parameter.py @@ -3,9 +3,15 @@ from typing import Optional import torch from colossalai.tensor.colo_tensor import ColoTensor -from colossalai.tensor.const import TensorType from colossalai.tensor.param_op_hook import ColoParamOpHookManager -from colossalai.tensor.tensor_spec import ColoTensorSpec + +from .colo_tensor import _convert_output + +WHITE_LIST_FUNCS = {torch.Tensor.__getitem__} + + +def is_no_hook_op(func) -> bool: + return func.__name__.startswith('__') and func not in WHITE_LIST_FUNCS def filter_colo_parameters(*args, **kwargs): @@ -41,53 +47,25 @@ class ColoParameter(ColoTensor, torch.nn.Parameter): """ - def __new__(cls, - data: Optional[torch.Tensor] = None, - requires_grad: bool = True, - spec: ColoTensorSpec = None) -> 'ColoParameter': + def __new__(cls, data: Optional[torch.Tensor] = None, requires_grad: bool = True) -> 'ColoParameter': if data is None: data = torch.empty(0) return torch.Tensor._make_subclass(cls, data, requires_grad) - def __init__(self, - data: Optional[torch.Tensor] = None, - requires_grad: bool = True, - spec: ColoTensorSpec = None) -> None: - ColoTensor.__init__(self, data, spec) - self._type = TensorType.MODEL - # a list contains modules sharing this ColoParameter with others. - self._shared_param_modules = [] - - @property - def shared_param_modules(self): - return self._shared_param_modules - - @staticmethod - def from_torch_tensor(tensor: torch.Tensor, - requires_grad: bool = True, - spec: ColoTensorSpec = None) -> 'ColoParameter': - tensor = tensor.as_subclass(ColoParameter) - tensor.__init__(tensor, requires_grad=requires_grad, spec=spec) - return tensor - - def __repr__(self): - return super(ColoParameter, self).__repr__() - @classmethod def __torch_function__(cls, func, types, args=..., kwargs=None): - if ColoParamOpHookManager.has_hook(): - if not func.__name__.startswith('__'): - if kwargs is None: - kwargs = {} - params = filter_colo_parameters(*args, **kwargs) - if len(params) > 0: - with torch._C.DisableTorchFunction(): - new_args = ColoParamOpHookManager.pre_op(params, *args, *kwargs.values()) - args, kwargs = replace_args(args, kwargs, new_args) - ret = super().__torch_function__(func, types, args, kwargs) - with torch._C.DisableTorchFunction(): - ret = ColoParamOpHookManager.post_op(params, ret) - return ret + if kwargs is None: + kwargs = {} + if ColoParamOpHookManager.has_hook() and not is_no_hook_op(func): + params = filter_colo_parameters(*args, **kwargs) + if len(params) > 0: + with torch._C.DisableTorchFunction(): + new_args = ColoParamOpHookManager.pre_op(params, *args, *kwargs.values()) + args, kwargs = replace_args(args, kwargs, new_args) + ret = super().__torch_function__(func, types, args, kwargs) + with torch._C.DisableTorchFunction(): + ret = ColoParamOpHookManager.post_op(params, ret) + return _convert_output(ret, func) return super().__torch_function__(func, types, args, kwargs) def __deepcopy__(self, memo): @@ -96,9 +74,7 @@ class ColoParameter(ColoTensor, torch.nn.Parameter): else: with torch._C.DisableTorchFunction(): data = self.data.clone() - tensor = ColoParameter(data, - self.requires_grad, - spec=ColoTensorSpec(self.get_process_group(), self.dist_spec, self.compute_spec)) + tensor = ColoParameter(data, self.requires_grad) memo[id(self)] = tensor return tensor diff --git a/colossalai/tensor/colo_tensor.py b/colossalai/tensor/colo_tensor.py index 4d7620764..a20a1444a 100644 --- a/colossalai/tensor/colo_tensor.py +++ b/colossalai/tensor/colo_tensor.py @@ -1,17 +1,14 @@ -import operator -from copy import copy -from functools import lru_cache, reduce -from typing import Callable, Optional, Set +from functools import lru_cache +from typing import Callable, Set import torch -from colossalai.tensor.dist_spec_mgr import DistSpecManager -from colossalai.tensor.distspec import DistPlacementPattern, ReplicaSpec, _DistSpec -from colossalai.tensor.process_group import ProcessGroup -from colossalai.tensor.tensor_spec import ColoTensorSpec - -from .const import TensorType -from .op_wrapper import _COLOSSAL_OPS +INPALCE_MAPPING = { + torch.Tensor.add_: torch.Tensor.add, + torch.Tensor.sub_: torch.Tensor.sub, + torch.Tensor.mul_: torch.Tensor.mul, + torch.Tensor.div_: torch.Tensor.div +} @lru_cache(None) @@ -25,61 +22,37 @@ def _get_my_nowrap_functions() -> Set[Callable]: } -def _convert_output(output, colo_spec: ColoTensorSpec): - if type(output) == torch.Tensor: - return ColoTensor.from_torch_tensor(output, colo_spec) +def _convert(output): + if isinstance(output, torch.Tensor) and not isinstance(output, ColoTensor): + output.__class__ = ColoTensor elif isinstance(output, (list, tuple)): - return type(output)(_convert_output(o, colo_spec) for o in output) - else: + output = type(output)(_convert(o) for o in output) + return output + + +def _convert_output(output, func): + if func in _get_my_nowrap_functions(): return output - - -def _get_spec_from_args(args, kwargs) -> ColoTensorSpec: - for elem in args: - if isinstance(elem, ColoTensor): - pg = elem.get_process_group() - dp = elem.dist_spec - return ColoTensorSpec(pg, dp) - elif isinstance(elem, (list, tuple)): - spec = _get_spec_from_args(elem, {}) - if spec is not None: - return spec - for k, v in kwargs.items(): - if isinstance(v, ColoTensor): - pg = v.get_process_group() - dp = v.dist_spec - return ColoTensorSpec(pg, dp) - return None + return _convert(output) class ColoTensor(torch.Tensor): """ Data Structure for Tensor in Colossal-AI. It is a subclass of torch.Tensor. - The Colotensor can be initialized with a PyTorch tensor in the following ways. - - >>> pg = ProcessGroup() - >>> colo_t1 = ColoTensor(torch.randn(2,3), spec = ColoTensorSpec(pg, ReplicaSpec())) - >>> # The tensor passed in is a tensor after sharding but not a global tensor. - >>> shard_spec = ShardSpec(process_group=ProcessGroup(tp=world_size), - >>> dims=[0], - >>> num_partitions=[world_size]) - >>> tensor_spec = ColoTensorSpec(pg, shard_spec) - >>> colo_t2 = ColoTensor.from_torch_tensor(t_ref.clone(), tensor_spec) + It is only used to trigger the torch function hook. Args: data (torch.Tensor): a torch tensor used as the payload the colotensor. - spec (ColoTensorSpec, optional): the tensor spec of initialization. Defaults to ColoTensorSpec(ReplicaSpec()). """ torch_major = int(torch.__version__.split('.')[0]) torch_minor = int(torch.__version__.split('.')[1]) - def __new__(cls, data: torch.Tensor, spec: ColoTensorSpec) -> 'ColoTensor': + def __new__(cls, data: torch.Tensor) -> 'ColoTensor': """ The signature of the __new__ has to be consistent with the torch.Tensor. Args: data (torch.Tensor): a torch tensor used as the payload the colotensor. - spec (TensorSpec, optional): the tensor spec of initialization. Returns: ColoTensor: a ColoTensor wrappers the data. @@ -88,86 +61,6 @@ class ColoTensor(torch.Tensor): data = torch.empty(0) return torch.Tensor._make_subclass(cls, data, data.requires_grad) - def __init__(self, data: torch.Tensor, spec: Optional[ColoTensorSpec] = None) -> None: - # If not set spec, use a DP process group and replicate dist spec - if spec is None: - self.has_initialized = False - self.dist_spec = ReplicaSpec() - self.compute_spec = None - self.process_group = ProcessGroup() - else: - self.has_initialized = True - self.dist_spec = spec.dist_attr - self.compute_spec = spec.compute_attr - if spec.pg is None: - self.process_group = ProcessGroup() - else: - self.process_group = spec.pg - - self._type = TensorType.NONMODEL - - def has_compute_spec(self) -> bool: - return self.compute_spec is not None - - def is_model_data(self) -> bool: - return self._type == TensorType.MODEL - - def get_process_group(self) -> 'ProcessGroup': - return self.process_group - - def set_process_group(self, pg: ProcessGroup): - """set_process_group - change the pg of the ColoTensor. Note that the valid use cases is limited. - It works for the target pg is DP and TP only and current dist spec of the Tensor is Replica. - - Args: - pg (ProcessGroup): target pg - - """ - assert isinstance(pg, ProcessGroup), f"pg as type {type(pg)} is invalid" - # if the new pg is the same as the old pg, just returns - if self.process_group == pg: - return - assert self.process_group.tp_world_size() == 1 or self.process_group.dp_world_size() == 1, \ - "Can not set_process_group on a ColoTensor whose process_group is both tp > 1 and world group > 1" - assert self.dist_spec.placement.value == 'r', \ - "Can not set_process_group on a ColoTensor whose dist spec is not Replica" - - self.process_group = pg - - def get_tp_world_size(self) -> int: - return self.process_group.tp_world_size() - - def get_dp_world_size(self) -> int: - """get_dp_world_size - get the dp world size of the tensor. - - Returns: - int: dp world size - """ - return self.process_group.dp_world_size() - - def set_dist_spec(self, dist_spec: _DistSpec): - """set_dist_spec - set dist spec and change the payloads. - - Args: - dist_spec (_DistSpec): target dist spec. - """ - assert isinstance(dist_spec, _DistSpec) - assert self.process_group is not None - self._redistribute(dist_spec) - - def set_tensor_spec(self, dist_spec, compute_spec): - if dist_spec is not None: - assert isinstance(dist_spec, _DistSpec), f"{type(dist_spec)}" - self.set_dist_spec(dist_spec) - if compute_spec is not None: - self.compute_spec = compute_spec - - def has_compute_pattern(self, compute_pattern): - return self.compute_spec.compute_pattern == compute_pattern - @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: @@ -175,9 +68,6 @@ class ColoTensor(torch.Tensor): if not all(issubclass(cls, t) for t in types): return NotImplemented - global _COLOSSAL_OPS - if func in _COLOSSAL_OPS: - func = _COLOSSAL_OPS[func] if cls.torch_major > 1 or (cls.torch_major == 1 and cls.torch_minor >= 12): # in order to trigger pre-op hook in the forward of checkpoint module @@ -189,94 +79,16 @@ class ColoTensor(torch.Tensor): tensor_kwargs = {k: torch.Tensor(v) if torch.is_tensor(v) else v for k, v in kwargs.items()} return backward_tensor.backward(**tensor_kwargs) + # replace the in-place function + if func in INPALCE_MAPPING: + func = INPALCE_MAPPING[func] + # set the 'inplace' kwargs to False + if 'inplace' in kwargs: + kwargs['inplace'] = False + with torch._C.DisableTorchFunction(): ret = func(*args, **kwargs) - if func in _get_my_nowrap_functions(): - return ret - else: - colo_spec = _get_spec_from_args(args, kwargs) - return _convert_output(ret, colo_spec) - - def __repr__(self): - output_list = [super(ColoTensor, self).__repr__()] - output_list.append(str(self.process_group)) - output_list.append(str(self.dist_spec)) - if self.compute_spec is not None: - output_list.append(str(self.compute_spec)) - return "\n".join(output_list) - - def _redistribute(self, dist_spec: _DistSpec) -> None: - """_redistribute - Note the function will not handle the logic of backward propagation! - It is used during model tensor initializations as an internal function. - - Args: - dist_spec (_DistSpec): the target dist. spec. - """ - assert self.grad_fn is None, "Current tensor has grad_fn and it can't get converted" - with DistSpecManager.no_grad(): - self.data = DistSpecManager.handle_trans_spec(self.data, self.dist_spec, dist_spec, self.process_group) - self.dist_spec = dist_spec - - def redistribute(self, dist_spec: _DistSpec, pg: Optional[ProcessGroup] = None) -> 'ColoTensor': - """redistribute - Redistribute the tensor among processes. The rule is like this: - - 1. If the pg is None, then redistribute the tensor payload among the TP process group. Keep the - DP process group not changed. - - 2. If the pg is not not None and not equal to the current process group. - First, convert the tensor as replicated among the TP process group. - Second, reset the process group to the new pg. - Third, convert the tensor (new replicated both among the tp process group) to the new dist_spec. - - Args: - dist_spec (_DistSpec): the new dist spec. - pg (Optional[ProcessGroup], optional): the new process group . Defaults to None. - - Returns: - ColoTensor: a redistributed colotensor - """ - if pg is not None and pg != self.get_process_group(): - # if the pg is not equal, convert the current tensor to replicated - handled = self.redistribute(ReplicaSpec()) - else: - handled = self - pg = self.process_group - - ret = DistSpecManager.handle_trans_spec(handled, handled.dist_spec, dist_spec, pg) - return ColoTensor.from_torch_tensor(ret, ColoTensorSpec(pg=pg, dist_attr=dist_spec)) - - def to_replicate_(self): - """to_replicate_ - - an inline member function, converting dist spec of the tensor to REPLICATE - """ - self._redistribute(dist_spec=ReplicaSpec()) - - def to_replicate(self) -> 'ColoTensor': - """to_replicate - - converting dist spec of the tensor to ReplicaSpec() - """ - return self.redistribute(ReplicaSpec()) - - @staticmethod - def from_torch_tensor(tensor: torch.Tensor, spec: Optional[ColoTensorSpec] = None) -> 'ColoTensor': - """from_torch_tensor - - A static method builds a `ColoTensor` from a PyTorch Tensor. - - Args: - tensor (torch.Tensor): the pytorch tensor, which is a local tensor for this rank not a global tensor. - spec (Optional[ColoTensorSpec], optional): tensor spec. Defaults to None. - - Returns: - ColoTensor: a ColoTensor - """ - tensor = tensor.as_subclass(ColoTensor) - tensor.__init__(tensor, spec=spec) - return tensor + return _convert_output(ret, func) def __deepcopy__(self, memo): if id(self) in memo: @@ -284,60 +96,6 @@ class ColoTensor(torch.Tensor): else: with torch._C.DisableTorchFunction(): data = self.data.clone() - tensor = ColoTensor(data, spec=copy(ColoTensorSpec(self.process_group, self.dist_spec, self.compute_spec))) + tensor = ColoTensor(data) memo[id(self)] = tensor return tensor - - # override builtin functions which must use tensor in replicate placement # - - def size_local(self, *args) -> torch.Size: - with torch._C.DisableTorchFunction(): - return super().size(*args) - - def size_global(self, *args) -> torch.Size: - """size_global - - override the torch building size() - the shape passed in must be in a replicate placement. - - Returns: - torch.Size: the global tensor shape - """ - if self.is_replicate(): - return self.size_local(*args) - spec = self.dist_spec - dims = spec.dims - num_partitions = spec.num_partitions - # import inspect - # print(*['{:40}| {}:{}\n'.format(x.function, x.filename, x.lineno) for x in inspect.stack()]) - size_list = list(self.size_local()) - for dim, num_partition in zip(dims, num_partitions): - size_list[dim] *= num_partition - if args == (): - return torch.Size(size_list) - else: - return size_list[args[0]] - - def numel_global(self): - """Returns the number of elements in the tensor when it's replicated. - """ - return reduce(operator.mul, self.size_global(), 1) - - # Some API for dist spec check - - def is_replicate(self): - return self.dist_spec.placement == DistPlacementPattern.REPLICATE \ - or (len(self.dist_spec.num_partitions) == 1 - and self.dist_spec.num_partitions[0] == 1) \ - or (self.process_group.tp_world_size() == 1) - - def is_shard_1dcol(self): - return self.dist_spec.placement == DistPlacementPattern.SHARD \ - and len(self.dist_spec.dims) == 1 and self.dist_spec.dims[0] == -1 - - def is_shard_1drow(self): - return self.dist_spec.placement == DistPlacementPattern.SHARD \ - and len(self.dist_spec.dims) == 1 and self.dist_spec.dims[0] == 0 - - def is_sharded(self): - return self.dist_spec.placement == DistPlacementPattern.SHARD diff --git a/colossalai/tensor/param_op_hook.py b/colossalai/tensor/param_op_hook.py index 8ed8176d9..e37859bac 100644 --- a/colossalai/tensor/param_op_hook.py +++ b/colossalai/tensor/param_op_hook.py @@ -3,9 +3,7 @@ from contextlib import contextmanager from typing import Any, List, Tuple import torch - -from colossalai.tensor.colo_tensor import ColoTensor -from colossalai.tensor.tensor_spec import ColoTensorSpec +from torch.utils._pytree import TreeSpec, tree_flatten, tree_unflatten class ColoParamOpHook(ABC): @@ -82,26 +80,18 @@ class ColoParamOpHookManager: @staticmethod def pre_op(params: List[torch.Tensor], *args: Any) -> list: ColoParamOpHookManager._trigger_pre_forward(params) - grad_args, rear_args = _get_grad_args(*args) - colo_info = _get_colo_tensors_info(*grad_args) - rets = PreFwdPostBwd.apply(params, *grad_args) - update_args = _update_colo_tensors(colo_info, *rets) - if rear_args is None: - return update_args - else: - arg_zero = (tuple(update_args),) - return arg_zero + rear_args + # auto grad function can only recognize torch.Tensor, thus we have to flatten the input + # if one of the input requires grad, all the output will be treated as requires grad + # and will have grad fn even the corresponding input does not require grad + # we have to extract tensors requiring grad into flat list and then merge them back + grad_args, other_args, grad_flags, spec = _flatten_grad_args(args) + new_grad_args = PreFwdPostBwd.apply(params, *grad_args) + return _merge_args(new_grad_args, other_args, grad_flags, spec) @staticmethod def post_op(params: List[torch.Tensor], arg: Any) -> Any: ColoParamOpHookManager._trigger_post_forward(params) - colo_info = _get_colo_tensors_info(arg) - ret = PostFwdPreBwd.apply(params, arg) - res = _update_colo_tensors(colo_info, ret) - if len(res) == 1: - return res[0] - else: - return res + return PostFwdPreBwd.apply(params, arg) @staticmethod def has_hook() -> bool: @@ -141,57 +131,24 @@ def _is_grad_tensor(obj) -> bool: return False -def _has_grad_tensor(obj) -> bool: - if isinstance(obj, tuple) or isinstance(obj, list): - for x in obj: - if _has_grad_tensor(x): - return True - return False - elif isinstance(obj, dict): - for x in obj.values(): - if _has_grad_tensor(x): - return True - return False - else: - return _is_grad_tensor(obj) - - -def _get_grad_args(*args): - # if there is no grad tensors, do nothing - if not _has_grad_tensor(args): - return args, None - # returns the identical args if there is a grad tensor - for obj in args: - if _is_grad_tensor(obj): - return args, None - # otherwise, the first argument should be a tuple of grad tensors - # if there is no grad tensor, the backward of PreFwdPostBwd can't be triggered - arg_zero = args[0] - if not isinstance(arg_zero, tuple): - raise NotImplementedError("Some torch function is incompatible because of its complicated inputs.") - check_grad_flag = False - for obj in arg_zero: - check_grad_flag |= _is_grad_tensor(obj) - if not check_grad_flag: - raise NotImplementedError("Some torch function is incompatible because of its complicated inputs.") - return arg_zero, args[1:] - - -def _get_colo_tensors_info(*args) -> list: - info = [] - for arg in args: - if isinstance(arg, ColoTensor): - info.append((arg.__class__, ColoTensorSpec(arg.get_process_group(), arg.dist_spec, arg.compute_spec))) +def _flatten_grad_args(args) -> Tuple[list, list, List[bool], TreeSpec]: + flat_args, spec = tree_flatten(args) + grad_args = [] + other_args = [] + grad_flags = [] + for arg in flat_args: + flag = _is_grad_tensor(arg) + grad_flags.append(flag) + if flag: + grad_args.append(arg) else: - info.append(None) - return info + other_args.append(arg) + assert len(grad_args) > 0 + return grad_args, other_args, grad_flags, spec -def _update_colo_tensors(info, *args) -> list: - ret = [] - for t_info, arg in zip(info, args): - if t_info is not None: - t_cls, spec = t_info - arg = t_cls.from_torch_tensor(arg, spec=spec) - ret.append(arg) - return ret +def _merge_args(grad_args, other_args, grad_flags, spec): + grad_iter = iter(grad_args) + other_iter = iter(other_args) + flat_args = [next(grad_iter) if flag else next(other_iter) for flag in grad_flags] + return tree_unflatten(flat_args, spec) diff --git a/colossalai/zero/__init__.py b/colossalai/zero/__init__.py index 3465079e4..4991241b8 100644 --- a/colossalai/zero/__init__.py +++ b/colossalai/zero/__init__.py @@ -2,8 +2,7 @@ from .gemini import ( ColoInitContext, GeminiAdamOptimizer, GeminiDDP, - ZeroDDP, - ZeroOptimizer, + GeminiOptimizer, get_static_torch_model, post_process_colo_init_ctx, ) @@ -11,6 +10,6 @@ from .low_level import LowLevelZeroOptimizer from .wrapper import zero_model_wrapper, zero_optim_wrapper __all__ = [ - 'ZeroDDP', 'GeminiDDP', 'ZeroOptimizer', 'GeminiAdamOptimizer', 'zero_model_wrapper', 'zero_optim_wrapper', + 'GeminiDDP', 'GeminiOptimizer', 'GeminiAdamOptimizer', 'zero_model_wrapper', 'zero_optim_wrapper', 'LowLevelZeroOptimizer', 'ColoInitContext', 'post_process_colo_init_ctx', 'get_static_torch_model' ] diff --git a/colossalai/zero/gemini/__init__.py b/colossalai/zero/gemini/__init__.py index 60f85ca2f..7ac6a9be4 100644 --- a/colossalai/zero/gemini/__init__.py +++ b/colossalai/zero/gemini/__init__.py @@ -1,11 +1,11 @@ from .chunk import ChunkManager, TensorInfo, TensorState, search_chunk_configuration from .colo_init_context import ColoInitContext, post_process_colo_init_ctx -from .gemini_ddp import GeminiDDP, ZeroDDP +from .gemini_ddp import GeminiDDP from .gemini_mgr import GeminiManager -from .gemini_optimizer import GeminiAdamOptimizer, ZeroOptimizer +from .gemini_optimizer import GeminiAdamOptimizer, GeminiOptimizer from .utils import get_static_torch_model __all__ = [ - 'GeminiManager', 'TensorInfo', 'TensorState', 'ChunkManager', 'search_chunk_configuration', 'ZeroDDP', 'GeminiDDP', - 'get_static_torch_model', 'GeminiAdamOptimizer', 'ZeroOptimizer', 'ColoInitContext', 'post_process_colo_init_ctx' + 'GeminiManager', 'TensorInfo', 'TensorState', 'ChunkManager', 'search_chunk_configuration', 'GeminiDDP', + 'get_static_torch_model', 'GeminiAdamOptimizer', 'GeminiOptimizer', 'ColoInitContext', 'post_process_colo_init_ctx' ] diff --git a/colossalai/zero/gemini/chunk/chunk.py b/colossalai/zero/gemini/chunk/chunk.py index 51da9be2b..3e7403adb 100644 --- a/colossalai/zero/gemini/chunk/chunk.py +++ b/colossalai/zero/gemini/chunk/chunk.py @@ -4,8 +4,8 @@ from typing import Dict, List, Optional import torch import torch.distributed as dist +from torch.distributed import ProcessGroup -from colossalai.tensor import ProcessGroup as ColoProcessGroup from colossalai.utils import get_current_device @@ -55,7 +55,7 @@ class Chunk: def __init__(self, chunk_size: int, - process_group: ColoProcessGroup, + process_group: ProcessGroup, dtype: torch.dtype, init_device: Optional[torch.device] = None, cpu_shard_init: bool = False, @@ -69,7 +69,7 @@ class Chunk: Args: chunk_size (int): the number of elements in the chunk - process_group (ColoProcessGroup): the process group of this chunk + process_group (ProcessGroup): the process group of this chunk dtype (torch.dtype): the data type of the chunk init_device (torch.device): optional, During the chunk construction process, where the tensor is stored. The default value is None, which is the current GPU @@ -83,7 +83,7 @@ class Chunk: self.chunk_size = chunk_size self.utilized_size = 0 - self.torch_pg = process_group.dp_process_group() + self.torch_pg = process_group self.pg_size = dist.get_world_size(self.torch_pg) self.pg_rank = dist.get_rank(self.torch_pg) @@ -218,7 +218,7 @@ class Chunk: return False else: return self.tensor_state_cnter[TensorState.HOLD] + \ - self.tensor_state_cnter[TensorState.HOLD_AFTER_BWD] == self.num_tensors + self.tensor_state_cnter[TensorState.HOLD_AFTER_BWD] == self.num_tensors @property def can_reduce(self): diff --git a/colossalai/zero/gemini/chunk/manager.py b/colossalai/zero/gemini/chunk/manager.py index 38d34f148..1e9623432 100644 --- a/colossalai/zero/gemini/chunk/manager.py +++ b/colossalai/zero/gemini/chunk/manager.py @@ -2,8 +2,9 @@ from collections import deque from typing import Deque, Dict, Iterable, List, Optional, Set, Tuple import torch +import torch.distributed as dist +from torch.distributed import ProcessGroup -from colossalai.tensor import ColoTensor from colossalai.utils import get_current_device from .chunk import Chunk, ChunkFullError, TensorState @@ -27,16 +28,17 @@ class ChunkManager: self.dp_degree_chunk_size_dict[k] = v.pop('chunk_size') v['init_device'] = self.device - self.chunk_groups: Dict[str, Deque] = dict() + self.chunk_groups: Dict[str, Deque[Chunk]] = dict() self.tensor_chunk_map: Dict[torch.Tensor, Chunk] = dict() self.accessed_chunks: Set[Chunk] = set() self.accessed_mem: int = 0 self.total_mem: Dict[str, int] = {'cpu': 0, 'cuda': 0} def register_tensor(self, - tensor: ColoTensor, + tensor: torch.Tensor, group_type: str, config_key: int, + process_group: ProcessGroup, cpu_offload: bool = False, pin_memory: bool = False) -> None: """ @@ -51,7 +53,7 @@ class ChunkManager: pin_memory: whether the chunk is pinned in the cpu memory """ assert tensor not in self.tensor_chunk_map - assert isinstance(tensor, ColoTensor), "Please feed ColoTensor to this ChunkManager" + assert isinstance(tensor, torch.Tensor), "Please feed Tensor to this ChunkManager" assert config_key in self.dp_degree_chunk_size_dict chunk_size = self.dp_degree_chunk_size_dict[config_key] @@ -73,12 +75,12 @@ class ChunkManager: if tensor.numel() > chunk_size: chunk_size = tensor.numel() - dp_size = tensor.get_dp_world_size() + dp_size = dist.get_world_size(process_group) chunk_size = chunk_size + (-chunk_size % dp_size) chunk = Chunk( chunk_size=chunk_size, - process_group=tensor.process_group, + process_group=process_group, dtype=tensor.dtype, cpu_shard_init=cpu_offload, pin_memory=pin_memory, @@ -220,7 +222,7 @@ class ChunkManager: msg.append(f'[{i}] {chunk}\n') return ''.join(msg) - def __get_chunk_group(self, group_name: str) -> Deque: + def __get_chunk_group(self, group_name: str) -> Deque[Chunk]: """Register a chunk group. """ if group_name not in self.chunk_groups: diff --git a/colossalai/zero/gemini/chunk/search_utils.py b/colossalai/zero/gemini/chunk/search_utils.py index 6c3d4f9a1..abaca5f82 100644 --- a/colossalai/zero/gemini/chunk/search_utils.py +++ b/colossalai/zero/gemini/chunk/search_utils.py @@ -4,6 +4,7 @@ from typing import Dict, List, Optional, Tuple import numpy as np import torch.distributed as dist import torch.nn as nn +from torch.distributed import ProcessGroup from colossalai.tensor import ColoParameter from colossalai.utils import is_ddp_ignored @@ -59,7 +60,7 @@ def _get_unused_byte(size_list: List[int], chunk_size: int) -> int: return left + acc -def _tensor_numel(local_param: ColoParameter, strict_ddp_flag: bool) -> int: +def _tensor_numel(local_param: ColoParameter) -> int: """_tensor_numel Get the number of elements of a tensor. @@ -71,15 +72,12 @@ def _tensor_numel(local_param: ColoParameter, strict_ddp_flag: bool) -> int: Returns: int: the number of elements. """ - if strict_ddp_flag and type(local_param) is ColoParameter: - return local_param.numel_global() - else: - # if local_param is not ColoParameter, we assume it's replicated - return local_param.numel() + # TODO(ver217): support dtensor here + return local_param.numel() def classify_params_by_dp_degree(param_order: OrderedParamGenerator, - strict_ddp_flag: bool = False) -> Dict[int, List[ColoParameter]]: + process_group: ProcessGroup) -> Dict[int, List[ColoParameter]]: """classify_params_by_dp_degree Classify the parameters by their dp degree @@ -97,13 +95,7 @@ def classify_params_by_dp_degree(param_order: OrderedParamGenerator, # assert isinstance(param, ColoParameter), "please init model in the ColoInitContext" if is_ddp_ignored(param): continue - - if strict_ddp_flag or type(param) is not ColoParameter: - # if model is not initialized with ColoInitContext, we assume it's replicated - # TODO(ver217): integrate DTensor - param_key = dist.get_world_size() - else: - param_key = param.process_group.dp_world_size() + param_key = dist.get_world_size(process_group) if param_key not in params_dict: params_dict[param_key] = [] @@ -119,6 +111,7 @@ def search_chunk_configuration( min_chunk_size_m: float = 32, filter_exlarge_params: bool = True, strict_ddp_flag: bool = False, + process_group: Optional[ProcessGroup] = None, memstas: Optional[MemStats] = None) -> Tuple[Dict, int, int]: """search_chunk_configuration @@ -149,7 +142,7 @@ def search_chunk_configuration( min_chunk_size = round(min_chunk_size_m * 1024**2) assert search_range >= 0 - params_dict = classify_params_by_dp_degree(param_order, strict_ddp_flag) + params_dict = classify_params_by_dp_degree(param_order, process_group) size_lcm = np.lcm.reduce(list(params_dict.keys())) config_dict: Dict[int, Dict] = dict() total_param_size = 0 @@ -157,7 +150,7 @@ def search_chunk_configuration( size_dict: Dict[int, List[int]] = dict() for dp_degree in params_dict: params_list = params_dict[dp_degree] - size_list = [_tensor_numel(p, strict_ddp_flag) for p in params_list] + size_list = [_tensor_numel(p) for p in params_list] group_acc_size = sum(size_list) total_param_size += group_acc_size diff --git a/colossalai/zero/gemini/gemini_ddp.py b/colossalai/zero/gemini/gemini_ddp.py index 08384ee82..0cd90459b 100644 --- a/colossalai/zero/gemini/gemini_ddp.py +++ b/colossalai/zero/gemini/gemini_ddp.py @@ -2,19 +2,20 @@ import itertools from collections import OrderedDict from contextlib import nullcontext from functools import partial -from typing import Dict, Iterator, List, Optional, Set, Tuple, Union +from typing import Dict, Iterable, Iterator, List, Optional, Set, Tuple, Union import torch import torch.distributed as dist import torch.nn as nn +from torch.distributed import ProcessGroup +from torch.distributed.distributed_c10d import _get_default_group from colossalai.checkpoint_io.utils import calculate_tensor_size +from colossalai.interface import ModelWrapper from colossalai.lazy import LazyTensor from colossalai.logging import get_dist_logger -from colossalai.nn.parallel.data_parallel import ColoDDP, _cast_float, free_storage -from colossalai.tensor import ProcessGroup as ColoProcessGroup -from colossalai.tensor import ReplicaSpec -from colossalai.tensor.colo_parameter import ColoParameter, ColoTensor, ColoTensorSpec +from colossalai.nn.parallel.data_parallel import _cast_float, free_storage +from colossalai.tensor.colo_parameter import ColoParameter from colossalai.tensor.param_op_hook import ColoParamOpHookManager from colossalai.utils import get_current_device, is_ddp_ignored @@ -30,14 +31,13 @@ except ImportError: _EXTRA_STATE_KEY_SUFFIX = '_extra_state' __all__ = [ - 'ZeroDDP', 'GeminiDDP', ] -class ZeroDDP(ColoDDP): - """ZeRO DDP for ColoTensor. - Warning: Nested ZeroDDP is not supported now. +class GeminiDDP(ModelWrapper): + """ZeRO DDP. + Warning: Nested GeminiDDP is not supported now. It is designed to be used with ChunkManager and GeminiManager. For more details, see the API reference of ``ChunkManager`` and ``GeminiManager``. @@ -54,20 +54,54 @@ class ZeroDDP(ColoDDP): mixed_precision (torch.dtype): If set to torch.float16, the model will be trained in fp16. Otherwise, the model will be trained in bf16. Defaults to torch.float16. """ - def __init__(self, - module: torch.nn.Module, - gemini_manager: GeminiManager, - pin_memory: bool = False, - force_outputs_fp32: bool = False, - strict_ddp_mode: bool = False, - scatter_after_inference: bool = True, - mixed_precision: torch.dtype = torch.float16) -> None: + def __init__( + self, + module: torch.nn.Module, + chunk_config_dict: Optional[dict] = None, + chunk_init_device: torch.device = torch.device('cpu'), + placement_policy: str = "static", + shard_param_frac: float = 1.0, # only for static placement + offload_optim_frac: float = 0.0, # only for static placement + offload_param_frac: float = 0.0, # only for static placement + warmup_non_model_data_ratio: float = 0.8, # only for auto placement + steady_cuda_cap_ratio: float = 0.9, # only for auto placement + search_range_m: int = 32, # chunk search options + hidden_dim: Optional[int] = None, # chunk search options + min_chunk_size_m: float = 32, # chunk search options + pin_memory: bool = False, + force_outputs_fp32: bool = False, + strict_ddp_mode: bool = False, + scatter_after_inference: bool = True, + mixed_precision: torch.dtype = torch.float16, + process_group: Optional[ProcessGroup] = None, + memstats: Optional[MemStats] = None, # genimi memory stats + verbose: bool = False) -> None: assert mixed_precision in (torch.float16, torch.bfloat16) - self.gemini_manager = gemini_manager - self.chunk_manager: ChunkManager = gemini_manager.chunk_manager + if chunk_config_dict is not None: + self.chunk_manager = ChunkManager(chunk_config_dict, chunk_init_device) + else: + # some ugly hotfix for the compatibility with Lightning + if search_range_m is None: + search_range_m = 32 + self.chunk_manager = init_chunk_manager(model=module, + init_device=chunk_init_device, + hidden_dim=hidden_dim, + search_range_m=search_range_m, + min_chunk_size_m=min_chunk_size_m, + strict_ddp_flag=strict_ddp_mode, + process_group=process_group, + verbose=verbose) + self.gemini_manager = GeminiManager(placement_policy, + self.chunk_manager, + memstats, + shard_param_frac=shard_param_frac, + offload_optim_frac=offload_optim_frac, + offload_param_frac=offload_param_frac, + warmup_non_model_data_ratio=warmup_non_model_data_ratio, + steady_cuda_cap_ratio=steady_cuda_cap_ratio) self.force_outputs_fp32 = force_outputs_fp32 - self.param_op_hook = GeminiZeROHook(gemini_manager) - self.fp32_params: List[ColoTensor] = list() + self.param_op_hook = GeminiZeROHook(self.gemini_manager) + self.fp32_params: List[torch.Tensor] = list() self.fp16_params: List[ColoParameter] = list() self.overflow_counter = 0 self.grads_device: Dict[torch.Tensor, torch.device] = dict() @@ -75,6 +109,7 @@ class ZeroDDP(ColoDDP): self.name2param: Dict[str, nn.Parameter] = dict() self.scatter_after_inference = scatter_after_inference self.mixed_precision = mixed_precision + self.dp_process_group = process_group or _get_default_group() self._logger = get_dist_logger() @@ -88,20 +123,67 @@ class ZeroDDP(ColoDDP): for p in module.parameters(): param_order.append(p) - self._init_chunks(param_order=param_order, - strict_ddp_mode=strict_ddp_mode, - cpu_offload=self.gemini_manager.policy_name != 'cuda', - pin_memory=pin_memory) - for name, param in module.named_parameters(): self.param2name[param] = name for m_name, m_var in module.named_modules(): for p_name, p_var in m_var.named_parameters(recurse=False): param_name = m_name + '.' + p_name if m_name else p_name self.name2param[param_name] = p_var - super().__init__(module, process_group=ColoProcessGroup()) + + self._init_chunks(param_order=param_order, + strict_ddp_mode=strict_ddp_mode, + cpu_offload=self.gemini_manager.policy_name != 'cuda', + pin_memory=pin_memory) + super().__init__(module) self._non_persistent_buffers_set = self._get_non_persistent_buffers_set(module) self._cast_buffers() + # register grad hook + for p in module.parameters(): + if is_ddp_ignored(p): + continue + if p.requires_grad: + p.register_hook(partial(self.grad_handle, p)) + + def parameters(self, recurse: bool = True): + return self.module.parameters(recurse) + + def named_parameters(self, prefix: str = '', recurse: bool = True): + return self.module.named_parameters(prefix, recurse) + + def named_buffers(self, prefix: str = '', recurse: bool = True): + return self.module.named_buffers(prefix, recurse) + + def named_children(self): + return self.module.named_children() + + def named_modules(self, + memo: Optional[Set[torch.nn.Module]] = None, + prefix: str = '', + remove_duplicate: bool = True): + return self.module.named_modules(memo, prefix, remove_duplicate) + + @staticmethod + def set_params_to_ignore(params_to_ignore: Iterable[torch.Tensor]) -> None: + """Sets parameters to be ignored by DDP. + This method must be called before initializing ColoDDP. + + Example: + >>> params_to_ignore = [] + >>> for p in module.parameters(): + >>> if should_ignore(p): + >>> params_to_ignore.append(p) + >>> ColoDDP.set_params_to_ignore(params_to_ignore) + >>> module = ColoDDP(module) + + Args: + params_to_ignore (Iterable[torch.Tensor]): A list of parameters to be ignored. + """ + for p in params_to_ignore: + p._ddp_to_ignore = True + + def unwrap(self): + # as save/load state dict is overwrited, only return self + return self def _get_non_persistent_buffers_set(self, module, @@ -207,7 +289,7 @@ class ZeroDDP(ColoDDP): error_params.append(self.param2name[param]) error_str = "\n\t".join(error_params) raise RuntimeError("ZERO DDP error: the synchronization of gradients doesn't exit properly.", - "The most possible reason is that the model is not compatible with ZeroDDP.\n", + "The most possible reason is that the model is not compatible with GeminiDDP.\n", f"{error_str}") self._setup_grads_ptr() self._logger.debug( @@ -227,6 +309,7 @@ class ZeroDDP(ColoDDP): self._post_backward() def grad_handle(self, p, grad): + setattr(p, "_gemini_reduced", True) empty_grad = torch.empty_like(grad) free_storage(empty_grad) with torch._C.DisableTorchFunction(): @@ -533,7 +616,7 @@ class ZeroDDP(ColoDDP): for chunk_32 in chunk_list: chunk_16 = chunk_32.paired_chunk assert chunk_16 is not None - chunk_16.optim_update() + chunk_16.payload.copy_(chunk_32.payload) for name, buf in persistent_buffers.items(): if buf is not None: @@ -557,17 +640,11 @@ class ZeroDDP(ColoDDP): unexpected_keys.append(key) def _init_chunks(self, param_order, strict_ddp_mode: bool, cpu_offload: bool, pin_memory: bool): - ddp_pg = ColoProcessGroup() + dp_world_size = dist.get_world_size(self.dp_process_group) for p in param_order.generate(): self._preprocess_param(p) assert type(p) is ColoParameter - # gather sharded parameters in the strict ddp mode - if strict_ddp_mode: - if not p.is_replicate(): - p.set_dist_spec(ReplicaSpec()) - p.set_process_group(pg=ddp_pg) - # ignore the parameters with no gradient if not p.requires_grad: self.set_params_to_ignore([p]) @@ -578,38 +655,37 @@ class ZeroDDP(ColoDDP): continue # create a fp32 parameter - fp32_data = p.data.float() - fp32_p = ColoTensor(fp32_data, spec=ColoTensorSpec(p.process_group)) + fp32_p = p.data.float() # create a fp16 parameter p.data = p.data.to(self.mixed_precision) # register the fp16 parameter and fp32 parameter in the chunk manager - dp_world_size = p.process_group.dp_world_size() self.chunk_manager.register_tensor(tensor=p, group_type='fp16_param', config_key=dp_world_size, + process_group=self.dp_process_group, cpu_offload=cpu_offload, pin_memory=pin_memory) self.chunk_manager.register_tensor(tensor=fp32_p, group_type='fp32_param', config_key=dp_world_size, + process_group=self.dp_process_group, cpu_offload=cpu_offload, pin_memory=pin_memory) self.fp16_params.append(p) self.fp32_params.append(fp32_p) - self.grads_device[p] = self.gemini_manager.default_device self.chunk_manager.close_all_groups() + self.gemini_manager.setup_grads_device(self.fp16_params, self.grads_device) + # move master weights to corresponding device and setup paired chunks for p, fp32_p in zip(self.fp16_params, self.fp32_params): chunk_16 = self.chunk_manager.get_chunk(p) chunk_32 = self.chunk_manager.get_chunk(fp32_p) chunk_32.init_pair(chunk_16) - - # keep gathered chunks are in CUDA - if chunk_16.keep_gathered: - self.grads_device[p] = get_current_device() + if chunk_32.device_type != self.grads_device[p].type: + self.chunk_manager.move_chunk(chunk_32, self.grads_device[p]) def _cast_buffers(self): for buffer in self.module.buffers(): @@ -727,67 +803,3 @@ class _StateDictSharder: self.current_block[name] = tensor self.current_block_size += tensor_size return ret_block, ret_block_size - - -class GeminiDDP(ZeroDDP): - - def __init__(self, - module: torch.nn.Module, - device: torch.device, - placement_policy: str = "cpu", - pin_memory: bool = False, - force_outputs_fp32: bool = False, - strict_ddp_mode: bool = False, - scatter_after_inference: bool = True, - search_range_m: int = 32, - hidden_dim: Optional[int] = None, - min_chunk_size_m: float = 32, - memstats: Optional[MemStats] = None, - mixed_precision: torch.dtype = torch.float16, - verbose: bool = False) -> None: - """ - A torch.Module wrapper using ZeRO-DP and Gemini. - ZeRO is for parallel. Gemini is for memory management. - WARNING: The class will modify the module inline! - - Example: - model is initialized under the context of ColoInitContext - >>> model = GeminiDDP(model, torch.cuda.current_device(), "cuda") - >>> logits = model(x) - >>> loss = criterion(logits, labels) - >>> model.backward(loss) - - Args: - module (torch.nn.Module): the model to be wrapped. - device (torch.device): device to place the model. - placement_policy (str, optional): "cpu", "cuda", "auto". Defaults to "cpu". - pin_memory (bool, optional): use pin memory on CPU. Defaults to False. - force_outputs_fp32 (bool, optional): force outputs are fp32. Defaults to False. - search_range_m (int, optional): chunk size searching range divided by 2^20. Defaults to 32. - hidden_dim (int, optional): the hidden dimension of DNN. - Users can provide this argument to speed up searching. - If users do not know this argument before training, it is ok. We will use a default value 1024. - min_chunk_size_m (float, optional): the minimum chunk size divided by 2^20. - If the aggregate size of parameters is still smaller than the minimum chunk size, - all parameters will be compacted into one small chunk. - memstats (MemStats, optional) the memory statistics collector by a runtime memory tracer. - """ - # some ugly hotfix for the compatibility with Lightning - if search_range_m is None: - search_range_m = 32 - - chunk_manager = init_chunk_manager(model=module, - init_device=device, - hidden_dim=hidden_dim, - search_range_m=search_range_m, - min_chunk_size_m=min_chunk_size_m, - strict_ddp_flag=strict_ddp_mode, - verbose=verbose) - gemini_manager = GeminiManager(placement_policy, chunk_manager, memstats) - super().__init__(module, - gemini_manager, - pin_memory, - force_outputs_fp32, - strict_ddp_mode, - scatter_after_inference, - mixed_precision=mixed_precision) diff --git a/colossalai/zero/gemini/gemini_mgr.py b/colossalai/zero/gemini/gemini_mgr.py index c38e6eff8..b8e471790 100644 --- a/colossalai/zero/gemini/gemini_mgr.py +++ b/colossalai/zero/gemini/gemini_mgr.py @@ -1,6 +1,6 @@ import functools from time import time -from typing import List, Optional, Tuple +from typing import Dict, List, Optional, Tuple import torch @@ -26,7 +26,11 @@ class GeminiManager: memstats (MemStats, optional): a mem stats collected by a runtime mem tracer. if None then GeminiManager will collect it during a warmup iteration. """ - def __init__(self, placement_policy: str, chunk_manager: ChunkManager, memstats: Optional[MemStats] = None) -> None: + def __init__(self, + placement_policy: str, + chunk_manager: ChunkManager, + memstats: Optional[MemStats] = None, + **placement_kwargs) -> None: assert placement_policy in PlacementPolicyFactory.get_policy_names() self.policy_name = placement_policy @@ -37,7 +41,7 @@ class GeminiManager: self._memstats = memstats self._mem_stats_collector = ChunkMemStatsCollector(chunk_manager, self._memstats) if policy_cls.need_mem_stats else None - self._placement_policy = policy_cls(chunk_manager, self._mem_stats_collector) + self._placement_policy = policy_cls(chunk_manager, self._mem_stats_collector, **placement_kwargs) self._compute_list: List[Tuple[Chunk, ...]] = [] self._compute_idx: int = -1 @@ -133,10 +137,6 @@ class GeminiManager: if self._warmup and self._placement_policy.need_mem_stats: self._compute_list.append(chunks) - @property - def default_device(self): - return self._placement_policy.get_default_device() - def sample_overall_data(self): if self._mem_stats_collector: self._mem_stats_collector.sample_overall_data() @@ -159,6 +159,6 @@ class GeminiManager: def is_cuda_margin_mem_avail(self) -> bool: return self._placement_policy.need_mem_stats - @staticmethod - def get_default_device(policy_name: str) -> torch.device: - return PlacementPolicyFactory.get_default_device(policy_name) + def setup_grads_device(self, params: List[torch.Tensor], grads_device_map: Dict[torch.Tensor, + torch.device]) -> None: + self._placement_policy.setup_grads_device(params, grads_device_map) diff --git a/colossalai/zero/gemini/gemini_optimizer.py b/colossalai/zero/gemini/gemini_optimizer.py index a2085323f..175b97647 100644 --- a/colossalai/zero/gemini/gemini_optimizer.py +++ b/colossalai/zero/gemini/gemini_optimizer.py @@ -2,7 +2,7 @@ import copy import math import warnings -from typing import Any, Dict, Iterator, OrderedDict, Set, Tuple +from typing import Any, Dict, Iterator, OrderedDict, Set, Tuple, Union import torch import torch.distributed as dist @@ -11,15 +11,16 @@ from torch.optim import Optimizer from colossalai.amp.naive_amp.mixed_precision_mixin import BF16MixedPrecisionMixin, FP16MixedPrecisionMixin from colossalai.checkpoint_io.utils import calculate_tensor_size +from colossalai.interface import OptimizerWrapper from colossalai.logging import get_dist_logger -from colossalai.nn.optimizer import ColossalaiOptimizer, CPUAdam, FusedAdam, HybridAdam +from colossalai.nn.optimizer import CPUAdam, FusedAdam, HybridAdam from colossalai.tensor.d_tensor import is_distributed_tensor from colossalai.utils import disposable, get_current_device, is_ddp_ignored from .chunk import Chunk, ChunkManager -from .gemini_ddp import ZeroDDP +from .gemini_ddp import GeminiDDP -__all__ = ['ZeroOptimizer', 'GeminiAdamOptimizer'] +__all__ = ['GeminiOptimizer', 'GeminiAdamOptimizer'] _AVAIL_OPTIM_LIST = {FusedAdam, CPUAdam, HybridAdam} @@ -27,7 +28,7 @@ _AVAIL_OPTIM_LIST = {FusedAdam, CPUAdam, HybridAdam} class GeminiFP16MixedPrecisionMixin(FP16MixedPrecisionMixin): def __init__(self, - module: ZeroDDP, + module: GeminiDDP, initial_scale: float = 2**16, min_scale: float = 1, growth_factor: float = 2, @@ -46,11 +47,11 @@ class GeminiFP16MixedPrecisionMixin(FP16MixedPrecisionMixin): self.module.overflow_counter = 0 -class ZeroOptimizer(ColossalaiOptimizer): - """A wrapper for optimizer. ``ZeroDDP`` and ``ZeroOptimizer`` implement Zero Redundancy Optimizer (ZeRO state-3). +class GeminiOptimizer(OptimizerWrapper): + """A wrapper for optimizer. ``GeminiDDP`` and ``GeminiOptimizer`` implement Zero Redundancy Optimizer (ZeRO state-3). Note: - You must use ``ZeroDDP`` with ``ZeroOptimizer``. + You must use ``GeminiDDP`` with ``GeminiOptimizer``. Note: Make sure you set ``placement_policy`` of ``GeminiManager`` to `"auto"`, @@ -58,7 +59,7 @@ class ZeroOptimizer(ColossalaiOptimizer): Args: optim (Optimizer): An Optimizer instance. - module (ZeroDDP): A ``ZeroDDP`` instance. + module (GeminiDDP): A ``GeminiDDP`` instance. gpu_margin_mem_ratio (float, optional): The ratio of GPU remaining memory (after the first forward-backward) which will be used when using hybrid CPU optimizer. This argument is meaningless when `placement_policy` of `GeminiManager` is not "auto". @@ -70,15 +71,15 @@ class ZeroOptimizer(ColossalaiOptimizer): growth_interval (float, optional): Growth_interval used by DynamicGradScaler. Defaults to 1000. hysteresis (float, optional): Hysteresis used by DynamicGradScaler. Defaults to 2. max_scale (int, optional): Max_scale used by DynamicGradScaler. Defaults to 2**32. - clipping_norm (float, optional): The norm value used to clip gradient. Defaults to 0.0. + max_norm (float, optional): The norm value used to clip gradient. Defaults to 0.0. norm_type (float, optional): The type of norm used for gradient clipping. Currently, only L2-norm (norm_type=2.0) - is supported in ZeroOptimizer. Defaults to 2.0. + is supported in GeminiOptimizer. Defaults to 2.0. verbose (bool, optional): Whether to print verbose information, including grad overflow info. Defaults to False. """ def __init__(self, optim: Optimizer, - module: ZeroDDP, + module: GeminiDDP, gpu_margin_mem_ratio: float = 0.0, initial_scale: float = 2**32, min_scale: float = 1, @@ -87,12 +88,12 @@ class ZeroOptimizer(ColossalaiOptimizer): growth_interval: int = 1000, hysteresis: int = 2, max_scale: float = 2**32, - clipping_norm: float = 0.0, + max_norm: float = 0.0, norm_type: float = 2.0, verbose: bool = False, **defaults: Any): super().__init__(optim) - assert isinstance(module, ZeroDDP) + assert isinstance(module, GeminiDDP) assert type(optim) in _AVAIL_OPTIM_LIST, "You should use an optimizer in the available list:\n" \ f"{_AVAIL_OPTIM_LIST}" self.module = module @@ -101,8 +102,8 @@ class ZeroOptimizer(ColossalaiOptimizer): self.param_to_range: Dict[Parameter, Tuple[int, int]] = dict() self.param_to_chunk32: Dict[Parameter, Chunk] = dict() self.chunk16_set: Set[Chunk] = set() - self.clipping_flag = clipping_norm > 0.0 - self.max_norm = clipping_norm + self.clipping_flag = max_norm > 0.0 + self.max_norm = max_norm self.verbose = verbose self.param_groups_backup = list() @@ -111,7 +112,7 @@ class ZeroOptimizer(ColossalaiOptimizer): self.id_to_fake_params: Dict[int, Parameter] = dict() if self.clipping_flag: - assert norm_type == 2.0, "ZeroOptimizer only supports L2 norm now" + assert norm_type == 2.0, "GeminiOptimizer only supports L2 norm now" ddp_param_list = [] for name, param in module.named_parameters(): @@ -735,8 +736,19 @@ class ZeroOptimizer(ColossalaiOptimizer): yield current_block, current_block_size + def clip_grad_by_value(self, clip_value: float, *args, **kwargs) -> None: + raise NotImplementedError('Gemini does not support clip_grad_by_value') -class GeminiAdamOptimizer(ZeroOptimizer): + def clip_grad_by_norm(self, + max_norm: Union[float, int], + norm_type: Union[float, int] = 2, + error_if_nonfinite: bool = False, + *args, + **kwargs) -> torch.Tensor: + warnings.warn(f'Gemini controls grad clipping by itself, so you should not use clip_grad_by_norm') + + +class GeminiAdamOptimizer(GeminiOptimizer): def __init__(self, model: torch.nn.Module, **defaults: Any) -> None: optimizer = HybridAdam(model.parameters(), **defaults) diff --git a/colossalai/zero/gemini/memory_tracer/memory_stats.py b/colossalai/zero/gemini/memory_tracer/memory_stats.py index 41d7e5754..02de6ecb9 100644 --- a/colossalai/zero/gemini/memory_tracer/memory_stats.py +++ b/colossalai/zero/gemini/memory_tracer/memory_stats.py @@ -9,7 +9,7 @@ class MemStats(object): def __init__(self) -> None: """ - Store the non model data statistics used for Gemini and ZeroOptimizer. + Store the non model data statistics used for Gemini and GeminiOptimizer. """ # (preop_step, List[param]) self._step_param_dict = dict() diff --git a/colossalai/zero/gemini/placement_policy.py b/colossalai/zero/gemini/placement_policy.py index 84a868872..cd775da5e 100644 --- a/colossalai/zero/gemini/placement_policy.py +++ b/colossalai/zero/gemini/placement_policy.py @@ -1,4 +1,5 @@ import functools +import warnings from abc import ABC, abstractmethod from time import time from typing import Dict, List, Optional, Tuple, Type @@ -7,6 +8,7 @@ import torch from colossalai.utils import get_current_device from colossalai.utils.memory import colo_device_memory_capacity +from colossalai.zero.gemini.chunk import Chunk from .chunk import Chunk, ChunkManager from .memory_tracer import ChunkMemStatsCollector @@ -17,7 +19,8 @@ class PlacementPolicy(ABC): def __init__(self, chunk_manager: ChunkManager, - mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None: + mem_stats_collector: Optional[ChunkMemStatsCollector] = None, + **kwargs) -> None: self.chunk_manager = chunk_manager self.mem_stats_collector: Optional[ChunkMemStatsCollector] = mem_stats_collector @@ -25,57 +28,87 @@ class PlacementPolicy(ABC): def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]: raise NotImplementedError - @staticmethod - def get_default_device() -> torch.device: - return torch.device('cpu') + @abstractmethod + def setup_grads_device(self, params: List[torch.Tensor], grads_device_map: Dict[torch.Tensor, + torch.device]) -> None: + raise NotImplementedError -class CPUPlacementPolicy(PlacementPolicy): +class StaticPlacementPolicy(PlacementPolicy): def __init__(self, chunk_manager: ChunkManager, - mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None: + mem_stats_collector: Optional[ChunkMemStatsCollector] = None, + shard_param_frac: float = 1.0, + offload_optim_frac: float = 0.0, + offload_param_frac: float = 0.0, + **kwargs) -> None: super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector) + if offload_param_frac > 0.0 and (shard_param_frac != 1.0 or offload_optim_frac != 1.0): + warnings.warn('offload_param_frac is ignored when shard_param_frac != 1.0 or offload_optim_frac != 1.0') + offload_param_frac = 0.0 + self.shard_param_frac = shard_param_frac + self.offload_optim_frac = offload_optim_frac + self.offload_param_frac = offload_param_frac + # these should be initialized in setup_grads_device + self.keep_gathered_chunk_mem = 0.0 + self.keep_cuda_chunk_mem = 0.0 def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]: - volume = 0 - start = time() + can_shard_chunk_mem = sum(chunk.chunk_mem for chunk in can_evict_chunks) + can_offload_chunk_mem = can_shard_chunk_mem for chunk in can_evict_chunks: + if can_shard_chunk_mem <= self.keep_gathered_chunk_mem: + break self.chunk_manager.release_chunk(chunk) + # real saved mem is chunk_mem - shard_mem, for simplicity we use chunk_mem + can_shard_chunk_mem -= chunk.chunk_mem + for chunk in can_evict_chunks: + if can_offload_chunk_mem <= self.keep_cuda_chunk_mem: + break self.chunk_manager.move_chunk(chunk, torch.device('cpu')) - volume += chunk.chunk_mem - return volume, time() - start + # real saved mem is shard_mem, for simplicity we use chunk_mem + can_offload_chunk_mem -= chunk.chunk_mem + return 0, 0.0 + def setup_grads_device(self, params: List[torch.Tensor], grads_device_map: Dict[torch.Tensor, + torch.device]) -> None: + total_chunk_mem = sum(self.chunk_manager.get_chunk(p).chunk_mem for p in params) -class CUDAPlacementPolicy(PlacementPolicy): - - def __init__(self, - chunk_manager: ChunkManager, - mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None: - assert torch.cuda.is_available(), 'Cannot use CUDATensorPlacementPolicy when CUDA is not available' - super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector) - - def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]: - return 0, 0 - - @staticmethod - def get_default_device() -> torch.device: - return get_current_device() + offload_optim_chunk_mem = total_chunk_mem * self.offload_optim_frac + offloaded_optim_chunk_mem = 0 + chunks = set(self.chunk_manager.get_chunk(p) for p in params) + for chunk in chunks: + params = chunk.get_tensors() + # init offload optim settings + # keep gathered chunks are in CUDA + if chunk.keep_gathered or offloaded_optim_chunk_mem >= offload_optim_chunk_mem: + device = get_current_device() + else: + device = torch.device('cpu') + # real offloaded mem is chunk.shard_mem, for simplicity we use chunk mem here + offloaded_optim_chunk_mem += chunk.chunk_mem + for p in params: + grads_device_map[p] = device + self.keep_gathered_chunk_mem = total_chunk_mem * (1 - self.shard_param_frac) + self.keep_cuda_chunk_mem = total_chunk_mem * (1 - self.offload_param_frac) class AutoPlacementPolicy(PlacementPolicy): - need_mem_stats: bool = True - # model data will use 1-_warmup_non_model_data_ratio CUDA memory in warmup phase - # you can set them by AutoPlacementPolicy.set_warmup_non_model_data_ratio() - # and AutoPlacementPolicy.set_steady_cuda_cap_ratio() - _warmup_non_model_data_ratio: float = 0.8 - _steady_cuda_cap_ratio: float = 0.9 def __init__(self, chunk_manager: ChunkManager, - mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None: + mem_stats_collector: Optional[ChunkMemStatsCollector] = None, + warmup_non_model_data_ratio: float = 0.8, + steady_cuda_cap_ratio: float = 0.9, + **kwargs) -> None: super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector) + # model data will use 1-_warmup_non_model_data_ratio CUDA memory in warmup phase + # you can set them by AutoPlacementPolicy.set_warmup_non_model_data_ratio() + # and AutoPlacementPolicy.set_steady_cuda_cap_ratio() + self._warmup_non_model_data_ratio = warmup_non_model_data_ratio + self._steady_cuda_cap_ratio = steady_cuda_cap_ratio def evict_tensors(self, can_evict_chunks: List[Chunk], @@ -105,11 +138,11 @@ class AutoPlacementPolicy(PlacementPolicy): used_cuda_model_data = self.chunk_manager.total_mem['cuda'] if warmup: # We designate a part of CUDA memory for model data in warmup iterations. - max_cuda_non_model_data_per_period = cuda_capacity * AutoPlacementPolicy._warmup_non_model_data_ratio + max_cuda_non_model_data_per_period = cuda_capacity * self._warmup_non_model_data_ratio else: # max non-model-data cuda memory consumption of this sampling moment and the next sampling moment. max_cuda_non_model_data_per_period = self.mem_stats_collector.next_period_non_model_data_usage('cuda') - cuda_capacity *= AutoPlacementPolicy._steady_cuda_cap_ratio + cuda_capacity *= self._steady_cuda_cap_ratio total_cuda_model_data = cuda_capacity - max_cuda_non_model_data_per_period avail_cuda_model_data = total_cuda_model_data - used_cuda_model_data freed_cuda_model_data = 0 @@ -145,89 +178,22 @@ class AutoPlacementPolicy(PlacementPolicy): next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True) return [t for (t, idx) in next_compute_idx] - @staticmethod - def set_warmup_non_model_data_ratio(ratio: float) -> None: - ratio = float(ratio) - assert 0.0 < ratio < 1.0 - AutoPlacementPolicy._warmup_non_model_data_ratio = ratio - - @staticmethod - def set_steady_cuda_cap_ratio(ratio: float) -> None: - ratio = float(ratio) - assert 0.0 < ratio < 1.0 - AutoPlacementPolicy._steady_cuda_cap_ratio = ratio - - -class ConstPlacementPolicy(PlacementPolicy): - - need_mem_stats: bool = False - _accessed_memory_boundary = 512 * 1024**2 - - def __init__(self, - chunk_manager: ChunkManager, - mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None: - super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector) - - def evict_tensors(self, - can_evict_chunks: List[Chunk], - cuda_demand: int = 0, - warmup: bool = True, - compute_list: Optional[List[Tuple[Chunk, ...]]] = None, - compute_idx: int = 0, - **kwargs) -> Tuple[int, float]: - """ - See the docstrings in the class `AutoPlacementPolicy`. - """ - start = time() - used_accessed_memory = self.chunk_manager.accessed_mem - avail_accessed_memory = ConstPlacementPolicy._accessed_memory_boundary - used_accessed_memory - freed_accessed_memory = 0 - - if avail_accessed_memory < cuda_demand: - to_free_memory = cuda_demand - avail_accessed_memory - to_free_chunks = can_evict_chunks - - if not warmup: - # sort all chunks - to_free_chunks = self._sort_can_evict_chunks(tuple(to_free_chunks), compute_idx, tuple(compute_list)) - - for chunk in to_free_chunks: - if freed_accessed_memory >= to_free_memory: - break - - self.chunk_manager.release_chunk(chunk) - self.chunk_manager.move_chunk(chunk, torch.device('cpu')) - freed_accessed_memory += chunk.chunk_mem - - if freed_accessed_memory < to_free_memory: - raise RuntimeError(f"Adjust layout failed! No enough CUDA memory! " - f"Need {to_free_memory}, freed {freed_accessed_memory}") - return freed_accessed_memory, time() - start - - @staticmethod - @functools.lru_cache(maxsize=None) - def _sort_can_evict_chunks(can_evict_chunks: tuple, compute_idx: int, compute_list: tuple) -> list: - next_compute_idx = {chunk: len(compute_list) for chunk in can_evict_chunks} - for i in range(len(compute_list) - 1, compute_idx, -1): - for chunk in compute_list[i]: - if chunk in next_compute_idx: - next_compute_idx[chunk] = i - next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True) - return [t for (t, idx) in next_compute_idx] - - @staticmethod - def set_const_memory_boundary(cuda_memory_mb: int) -> None: - boundary = int(cuda_memory_mb * 1024**2) - assert boundary > 0 - ConstPlacementPolicy._accessed_memory_boundary = boundary + def setup_grads_device(self, params: List[torch.Tensor], grads_device_map: Dict[torch.Tensor, + torch.device]) -> None: + for p in params: + chunk = self.chunk_manager.get_chunk(p) + # init offload optim settings + # keep gathered chunks are in CUDA + if chunk.keep_gathered: + grads_device_map[p] = get_current_device() + else: + grads_device_map[p] = torch.device('cpu') class PlacementPolicyFactory: policies: Dict[str, Type[PlacementPolicy]] = { - 'cpu': CPUPlacementPolicy, - 'cuda': CUDAPlacementPolicy, 'auto': AutoPlacementPolicy, - 'const': ConstPlacementPolicy + 'static': StaticPlacementPolicy, } @staticmethod @@ -239,8 +205,3 @@ class PlacementPolicyFactory: @staticmethod def get_policy_names(): return tuple(PlacementPolicyFactory.policies.keys()) - - @staticmethod - def get_default_device(policy_name: str) -> torch.device: - policy_cls = PlacementPolicyFactory.create(policy_name) - return policy_cls.get_default_device() diff --git a/colossalai/zero/gemini/utils.py b/colossalai/zero/gemini/utils.py index 6f4a253b5..0d92d32e5 100644 --- a/colossalai/zero/gemini/utils.py +++ b/colossalai/zero/gemini/utils.py @@ -64,13 +64,13 @@ def get_static_torch_model(zero_ddp_model, device=torch.device("cpu"), dtype=torch.float32, only_rank_0=True) -> torch.nn.Module: - """Get a static torch.nn.Module model from the given ZeroDDP module. - You should notice that the original ZeroDDP model is not modified. + """Get a static torch.nn.Module model from the given GeminiDDP module. + You should notice that the original GeminiDDP model is not modified. Thus, you can use the original model in further training. But you should not use the returned torch model to train, this can cause unexpected errors. Args: - zero_ddp_model (ZeroDDP): a zero ddp model + zero_ddp_model (GeminiDDP): a zero ddp model device (torch.device): the device of the final torch model dtype (torch.dtype): the dtype of the final torch model only_rank_0 (bool): if True, only rank0 has the converted torch model @@ -78,8 +78,8 @@ def get_static_torch_model(zero_ddp_model, Returns: torch.nn.Module: a static torch model used for saving checkpoints or numeric checks """ - from colossalai.zero.gemini.gemini_ddp import ZeroDDP - assert isinstance(zero_ddp_model, ZeroDDP) + from colossalai.zero.gemini.gemini_ddp import GeminiDDP + assert isinstance(zero_ddp_model, GeminiDDP) state_dict = zero_ddp_model.state_dict(only_rank_0=only_rank_0) colo_model = zero_ddp_model.module diff --git a/colossalai/zero/wrapper.py b/colossalai/zero/wrapper.py index 3e48f49fa..90325fe0a 100644 --- a/colossalai/zero/wrapper.py +++ b/colossalai/zero/wrapper.py @@ -109,6 +109,6 @@ def zero_optim_wrapper(model: nn.Module, config_dict['clip_grad_norm'] = max_norm return LowLevelZeroOptimizer(optimizer, **config_dict, verbose=verbose) else: - from colossalai.zero.gemini.gemini_optimizer import ZeroOptimizer + from colossalai.zero.gemini.gemini_optimizer import GeminiOptimizer config_dict['clipping_norm'] = max_norm - return ZeroOptimizer(optimizer, model, **config_dict, verbose=verbose) + return GeminiOptimizer(optimizer, model, **config_dict, verbose=verbose) diff --git a/docs/source/en/features/zero_with_chunk.md b/docs/source/en/features/zero_with_chunk.md index b50d2d022..955559ba2 100644 --- a/docs/source/en/features/zero_with_chunk.md +++ b/docs/source/en/features/zero_with_chunk.md @@ -54,32 +54,38 @@ We also provide a lightweight chunk search mechanism to help users automatically We will use `GeminiDDP` to use ZeRO with chunk-based memory management. This is our new torch.Module wrapper which uses ZeRO-DP and Gemini. ZeRO is for parallelism and Gemini is for memory management. -Also Make sure that your model is initialized under the context of ColoInitContext. +Gemini allows LazyInitContext, which can save memory when initializing large models with multi-GPUs. +If your model has `N` billion parameters and your GPU memory is `M` GB, we recommend you use LazyInitContext when `4N >= M`. Otherwise, LazyInitContext is optional. + + ```python -with ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg): +with LazyInitContext(default_device=torch.device('cuda')): model = gpt2_medium(checkpoint=True) ``` + -Define the model parameters as follows: +We've provided `Booster` API which is user-friendly. We recommend you use `Booster` API. But if you still want to use low level API, you can read below content of this section. +Wrap the model with `GeminiDDP`. + + ```python -chunk_manager = init_chunk_manager(model=module, - init_device=device, - hidden_dim=hidden_dim, - search_range_m=search_range_m, - min_chunk_size_m=min_chunk_size_m) -gemini_manager = GeminiManager(placement_policy, chunk_manager) +model = GeminiDDP(model, hidden_dim=hidden_dim, min_chunk_size_m=min_chunk_size_m) ``` + `hidden_dim` is the hidden dimension of DNN. Users can provide this argument to speed up searching. If users do not know this argument before training, it is ok. We will use a default value 1024. `min_chunk_size_m` is a floating point, being the minimum chunk size divided by 2^20 (e.g., if min_chunk_size_m=2.5, then the minimum chunk size should be 2.5*(2^20)).If the aggregate size of parameters is still smaller than the minimum chunk size, all parameters will be compacted into one small chunk. Initialization of the optimizer. + ```python optimizer = GeminiAdamOptimizer(model, lr=1e-3, initial_scale=2**5) ``` + Training + ```python optimizer.zero_grad() outputs = model(input_ids, attn_mask) @@ -87,6 +93,7 @@ loss = criterion(outputs, input_ids) optimizer.backward(loss) optimizer.step() ``` + > ⚠️ Note: Please do not use `loss.backward()`, the standard way of writing is `optimizer.backward(loss)`. ### Train GPT @@ -142,46 +149,6 @@ class GPTLMLoss(nn.Module): return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) ``` -Define tensor parallel and parameter sharding strategies for tensor parallelism: - -```python -def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup): - for mn, module in model.named_modules(): - for pn, param in module.named_parameters(recurse=False): - if hasattr(param, 'visited'): - continue - param.set_dist_spec(ReplicaSpec()) - if 'mlp.c_fc' in mn: - if 'weight' in pn or 'bias' in pn: - split_param_col_tp1d(param, pg) - param.compute_spec.set_output_replicate(False) - else: - param.set_dist_spec(ReplicaSpec()) - elif 'mlp.c_proj' in mn: - if 'weight' in pn: - split_param_row_tp1d(param, pg) - else: - param.set_dist_spec(ReplicaSpec()) - elif 'wte' in mn or 'wpe' in mn: - split_param_col_tp1d(param, pg) - elif 'c_attn' in mn or 'c_proj' in mn: - split_param_col_tp1d(param, pg) - else: - param.set_dist_spec(ReplicaSpec()) - - param.visited = True -def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup): - spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - param.set_tensor_spec(*spec) - - -def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup): - split_param_single_dim_tp1d(0, param, pg) - - -def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup): - split_param_single_dim_tp1d(-1, param, pg) -``` Write a function to get random inputs: @@ -198,7 +165,7 @@ Finally, we define a model which uses Gemini + ZeRO DDP and define our training from colossalai.nn.optimizer import HybridAdam from colossalai.booster import Booster -from colossalai.zero import ColoInitContext +from colossalai.lazy import LazyInitContext from colossalai.booster.plugin import GeminiPlugin def main(): @@ -214,17 +181,13 @@ def main(): optimizer = HybridAdam(model.parameters(), lr=0.001) torch.manual_seed(123) - default_pg = ProcessGroup(tp_degree=args.tp_degree) - default_dist_spec = ShardSpec([-1], [args.tp_degree]) # build GPT model - with ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg): + with ColoInitContext(default_device=torch.device('cuda')): model = gpt2_medium(checkpoint=True) - pg = default_pg - # Tensor Parallelism (TP) - tensor_parallelize(model, pg) - # Gemini + ZeRO DP, Note it must be used after TP - plugin = GeminiPlugin(placement_policy='cuda', max_norm=1.0, initial_scale=2**5) + + # Gemini + ZeRO DP + plugin = GeminiPlugin(max_norm=1.0, initial_scale=2**5) booster = Booster(plugin=plugin) model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) diff --git a/docs/source/zh-Hans/features/zero_with_chunk.md b/docs/source/zh-Hans/features/zero_with_chunk.md index 513850f5c..adb3fac3a 100644 --- a/docs/source/zh-Hans/features/zero_with_chunk.md +++ b/docs/source/zh-Hans/features/zero_with_chunk.md @@ -53,32 +53,37 @@ 我们将运用`GeminiDDP`的方式来使用基于Chunk内存管理的ZeRO。这是我们新包装的torch.Module ,它使用 ZeRO-DP 和 Gemini,其中ZeRO 用于并行,Gemini 用于内存管理。 -同样需要确保你的模型是在 `ColoInitContext` 的上下文中初始化的。 +Gemini支持惰性初始化, 它可以节省多卡初始化大模型时的显存使用. +如果你的模型有 `N` billion 个参数,你的 GPU 内存为 `M` GB, 当 `4N >= M` 时,我们推荐使用 LazyInitContext。否则,LazyInitContext 是可选的。 + + ```python -with ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg): +with LazyInitContext(default_device=torch.device('cuda')): model = gpt2_medium(checkpoint=True) ``` + -定义模型参数如下: +我们提供了 `Booster` API,它用户友好。我们推荐你使用 `Booster` API。如果您仍然想使用底层 API,您可以继续阅读本节其他内容。 +使用 `GeminiDDP` 包装模型。 + + ```python -chunk_manager = init_chunk_manager(model=module, - init_device=device, - hidden_dim=hidden_dim, - search_range_m=search_range_m, - min_chunk_size_m=min_chunk_size_m) -gemini_manager = GeminiManager(placement_policy, chunk_manager) -model = ZeroDDP(model, gemini_manager) +model = GeminiDDP(model, hidden_dim=hidden_dim, min_chunk_size_m=min_chunk_size_m) ``` + `hidden dim`是DNN的隐藏维度。用户可以提供这个参数来加快搜索速度。如果用户在训练前不知道这个参数也可以。 我们将使用默认值 1024。`min_chunk_size_m`是以兆(2^20)为单位的最小块大小。如果参数的总大小仍然小于最小块大小,则所有参数将被压缩为一个小块。 初始化优化器。 + ```python optimizer = GeminiAdamOptimizer(model, lr=1e-3, initial_scale=2**5) ``` + + 训练 ```python optimizer.zero_grad() @@ -87,6 +92,7 @@ loss = criterion(outputs, input_ids) optimizer.backward(loss) optimizer.step() ``` + > ⚠️ 注意:请不要使用`loss.backward()`,规范写法是`optimizer.backward(loss)`。 ### 训练GPT @@ -143,47 +149,6 @@ class GPTLMLoss(nn.Module): return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) ``` -定义张量并行和参数分片策略: - -```python -def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup): - for mn, module in model.named_modules(): - for pn, param in module.named_parameters(recurse=False): - if hasattr(param, 'visited'): - continue - param.set_dist_spec(ReplicaSpec()) - if 'mlp.c_fc' in mn: - if 'weight' in pn or 'bias' in pn: - split_param_col_tp1d(param, pg) - param.compute_spec.set_output_replicate(False) - else: - param.set_dist_spec(ReplicaSpec()) - elif 'mlp.c_proj' in mn: - if 'weight' in pn: - split_param_row_tp1d(param, pg) - else: - param.set_dist_spec(ReplicaSpec()) - elif 'wte' in mn or 'wpe' in mn: - split_param_col_tp1d(param, pg) - elif 'c_attn' in mn or 'c_proj' in mn: - split_param_col_tp1d(param, pg) - else: - param.set_dist_spec(ReplicaSpec()) - - param.visited = True -def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup): - spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - param.set_tensor_spec(*spec) - - -def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup): - split_param_single_dim_tp1d(0, param, pg) - - -def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup): - split_param_single_dim_tp1d(-1, param, pg) -``` - 写一个获得随机输入的函数: ```python @@ -200,7 +165,7 @@ def get_data(batch_size, seq_len, vocab_size): from colossalai.nn.optimizer import HybridAdam from colossalai.booster import Booster -from colossalai.zero import ColoInitContext +from colossalai.lazy import LazyInitContext from colossalai.booster.plugin import GeminiPlugin def main(): @@ -216,17 +181,13 @@ def main(): optimizer = HybridAdam(model.parameters(), lr=0.001) torch.manual_seed(123) - default_pg = ProcessGroup(tp_degree=args.tp_degree) - default_dist_spec = ShardSpec([-1], [args.tp_degree]) # build GPT model - with ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg): + with ColoInitContext(default_device=torch.device('cuda')): model = gpt2_medium(checkpoint=True) - pg = default_pg - # Tensor Parallelism (TP) - tensor_parallelize(model, pg) - # Gemini + ZeRO DP, Note it must be used after TP - plugin = GeminiPlugin(placement_policy='cuda', max_norm=1.0, initial_scale=2**5) + + # Gemini + ZeRO DP + plugin = GeminiPlugin(max_norm=1.0, initial_scale=2**5) booster = Booster(plugin=plugin) model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion) diff --git a/examples/community/roberta/pretraining/run_pretraining.py b/examples/community/roberta/pretraining/run_pretraining.py index 9fae4bef2..53fa9f489 100644 --- a/examples/community/roberta/pretraining/run_pretraining.py +++ b/examples/community/roberta/pretraining/run_pretraining.py @@ -22,7 +22,7 @@ from colossalai.nn.parallel import GeminiDDP, zero_model_wrapper, zero_optim_wra from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec from colossalai.utils import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext -from colossalai.zero import ZeroOptimizer +from colossalai.zero import GeminiOptimizer def main(): @@ -46,7 +46,7 @@ def main(): args.local_rank = -1 args.log_interval = 1 else: - colossalai.launch_from_torch(config={}) #args.colossal_config + colossalai.launch_from_torch(config={}) # args.colossal_config args.local_rank = int(os.environ["LOCAL_RANK"]) logger.info( f'launch_from_torch, world size: {torch.distributed.get_world_size()} | ' + @@ -123,7 +123,8 @@ def main(): get_tflops_func = partial(get_tflops, numel, args.train_micro_batch_size_per_gpu, args.max_seq_length) # 144003367 is is the length of the entire dataset - steps_per_epoch = 144003367 // world_size // args.train_micro_batch_size_per_gpu // args.gradient_accumulation_steps // args.refresh_bucket_size #len(dataloader) + # len(dataloader) + steps_per_epoch = 144003367 // world_size // args.train_micro_batch_size_per_gpu // args.gradient_accumulation_steps // args.refresh_bucket_size total_steps = steps_per_epoch * args.epoch lr_scheduler = get_lr_scheduler(optimizer, total_steps=total_steps, last_epoch=-1) diff --git a/examples/images/dreambooth/test_ci.sh b/examples/images/dreambooth/test_ci.sh index 21f45adae..84345f589 100644 --- a/examples/images/dreambooth/test_ci.sh +++ b/examples/images/dreambooth/test_ci.sh @@ -20,6 +20,5 @@ for plugin in "gemini"; do --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --test_run=True \ - --num_class_images=200 \ - --placement="auto" # "cuda" + --num_class_images=200 done diff --git a/examples/images/dreambooth/train_dreambooth_colossalai.py b/examples/images/dreambooth/train_dreambooth_colossalai.py index 888b28de8..f60704650 100644 --- a/examples/images/dreambooth/train_dreambooth_colossalai.py +++ b/examples/images/dreambooth/train_dreambooth_colossalai.py @@ -2,9 +2,9 @@ import argparse import hashlib import math import os +import shutil from pathlib import Path from typing import Optional -import shutil import torch import torch.nn.functional as F @@ -19,6 +19,8 @@ from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import colossalai +from colossalai.booster import Booster +from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.logging import disable_existing_loggers, get_dist_logger @@ -26,8 +28,6 @@ from colossalai.nn.optimizer import HybridAdam from colossalai.utils import get_current_device from colossalai.zero import ColoInitContext from colossalai.zero.gemini import get_static_torch_model -from colossalai.booster import Booster -from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin disable_existing_loggers() logger = get_dist_logger() @@ -138,10 +138,10 @@ def parse_args(input_args=None): " resolution"), ) parser.add_argument( - "--placement", - type=str, - default="cpu", - help="Placement Policy for Gemini. Valid when using colossalai as dist plan.", + "--offload_optim_frac", + type=float, + default=1.0, + help="Fraction of optimizer states to be offloaded. Valid when using colossalai as dist plan.", ) parser.add_argument( "--center_crop", @@ -461,18 +461,17 @@ def main(args): revision=args.revision, ) - if args.externel_unet_path is None: logger.info(f"Loading UNet2DConditionModel from {args.pretrained_model_name_or_path}", ranks=[0]) unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, - subfolder="unet", - revision=args.revision, - low_cpu_mem_usage=False) + subfolder="unet", + revision=args.revision, + low_cpu_mem_usage=False) else: logger.info(f"Loading UNet2DConditionModel from {args.externel_unet_path}", ranks=[0]) unet = UNet2DConditionModel.from_pretrained(args.externel_unet_path, - revision=args.revision, - low_cpu_mem_usage=False) + revision=args.revision, + low_cpu_mem_usage=False) vae.requires_grad_(False) text_encoder.requires_grad_(False) @@ -491,30 +490,31 @@ def main(args): if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': - plugin = GeminiPlugin(placement_policy=args.placement, strict_ddp_mode=True, initial_scale=2 ** 5) + plugin = GeminiPlugin(offload_optim_frac=args.offload_optim_frac, strict_ddp_mode=True, initial_scale=2**5) elif args.plugin == 'low_level_zero': - plugin = LowLevelZeroPlugin(initial_scale=2 ** 5) + plugin = LowLevelZeroPlugin(initial_scale=2**5) booster = Booster(plugin=plugin, **booster_kwargs) # config optimizer for colossalai zero - optimizer = HybridAdam(unet.parameters(), lr=args.learning_rate, initial_scale=2**5, clipping_norm=args.max_grad_norm) + optimizer = HybridAdam(unet.parameters(), + lr=args.learning_rate, + initial_scale=2**5, + clipping_norm=args.max_grad_norm) # load noise_scheduler noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") # prepare dataset logger.info(f"Prepare dataset from {args.instance_data_dir}", ranks=[0]) - train_dataset = DreamBoothDataset( - instance_data_root=args.instance_data_dir, - instance_prompt=args.instance_prompt, - class_data_root=args.class_data_dir if args.with_prior_preservation else None, - class_prompt=args.class_prompt, - tokenizer=tokenizer, - size=args.resolution, - center_crop=args.center_crop, - test=args.test_run - ) + train_dataset = DreamBoothDataset(instance_data_root=args.instance_data_dir, + instance_prompt=args.instance_prompt, + class_data_root=args.class_data_dir if args.with_prior_preservation else None, + class_prompt=args.class_prompt, + tokenizer=tokenizer, + size=args.resolution, + center_crop=args.center_crop, + test=args.test_run) def collate_fn(examples): input_ids = [example["instance_prompt_ids"] for example in examples] @@ -690,6 +690,7 @@ def main(args): if args.push_to_hub: repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True) + if __name__ == "__main__": args = parse_args() main(args) diff --git a/examples/images/dreambooth/train_dreambooth_colossalai_lora.py b/examples/images/dreambooth/train_dreambooth_colossalai_lora.py index dce65ff51..c98950fd7 100644 --- a/examples/images/dreambooth/train_dreambooth_colossalai_lora.py +++ b/examples/images/dreambooth/train_dreambooth_colossalai_lora.py @@ -2,9 +2,9 @@ import argparse import hashlib import math import os +import shutil from pathlib import Path from typing import Optional -import shutil import torch import torch.nn.functional as F @@ -21,6 +21,8 @@ from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import colossalai +from colossalai.booster import Booster +from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.logging import disable_existing_loggers, get_dist_logger @@ -28,8 +30,6 @@ from colossalai.nn.optimizer import HybridAdam from colossalai.utils import get_current_device from colossalai.zero import ColoInitContext, GeminiAdamOptimizer from colossalai.zero.gemini import get_static_torch_model -from colossalai.booster import Booster -from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin disable_existing_loggers() logger = get_dist_logger() @@ -459,18 +459,17 @@ def main(args): revision=args.revision, ) - if args.externel_unet_path is None: logger.info(f"Loading UNet2DConditionModel from {args.pretrained_model_name_or_path}", ranks=[0]) unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, - subfolder="unet", - revision=args.revision, - low_cpu_mem_usage=False) + subfolder="unet", + revision=args.revision, + low_cpu_mem_usage=False) else: logger.info(f"Loading UNet2DConditionModel from {args.externel_unet_path}", ranks=[0]) unet = UNet2DConditionModel.from_pretrained(args.externel_unet_path, - revision=args.revision, - low_cpu_mem_usage=False) + revision=args.revision, + low_cpu_mem_usage=False) unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, @@ -490,8 +489,7 @@ def main(args): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] - lora_attn_procs[name] = LoRACrossAttnProcessor(hidden_size=hidden_size, - cross_attention_dim=cross_attention_dim) + lora_attn_procs[name] = LoRACrossAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) unet.set_attn_processor(lora_attn_procs) lora_layers = AttnProcsLayers(unet.attn_processors) @@ -513,14 +511,17 @@ def main(args): if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': - plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, initial_scale=2 ** 5) + plugin = GeminiPlugin(strict_ddp_mode=True, initial_scale=2**5) elif args.plugin == 'low_level_zero': - plugin = LowLevelZeroPlugin(initial_scale=2 ** 5) + plugin = LowLevelZeroPlugin(initial_scale=2**5) booster = Booster(plugin=plugin, **booster_kwargs) # config optimizer for colossalai zero - optimizer = HybridAdam(unet.parameters(), lr=args.learning_rate, initial_scale=2**5, clipping_norm=args.max_grad_norm) + optimizer = HybridAdam(unet.parameters(), + lr=args.learning_rate, + initial_scale=2**5, + clipping_norm=args.max_grad_norm) # load noise_scheduler noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") @@ -711,6 +712,7 @@ def main(args): if args.push_to_hub: repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True) + if __name__ == "__main__": args = parse_args() main(args) diff --git a/examples/images/resnet/README.md b/examples/images/resnet/README.md index c69828637..9a7493ea3 100644 --- a/examples/images/resnet/README.md +++ b/examples/images/resnet/README.md @@ -49,8 +49,8 @@ python eval.py -c ./ckpt-low_level_zero -e 80 Expected accuracy performance will be: -| Model | Single-GPU Baseline FP32 | Booster DDP with FP32 | Booster DDP with FP16 | Booster Low Level Zero | -| --------- | ------------------------ | --------------------- | --------------------- | ---------------------- | -| ResNet-18 | 85.85% | 84.91% | 85.46% | 84.50% | +| Model | Single-GPU Baseline FP32 | Booster DDP with FP32 | Booster DDP with FP16 | Booster Low Level Zero | Booster Gemini | +| --------- | ------------------------ | --------------------- | --------------------- | ---------------------- | -------------- | +| ResNet-18 | 85.85% | 84.91% | 85.46% | 84.50% | 84.60% | **Note: the baseline is adapted from the [script](https://pytorch-tutorial.readthedocs.io/en/latest/tutorial/chapter03_intermediate/3_2_2_cnn_resnet_cifar10/) to use `torchvision.models.resnet18`** diff --git a/examples/images/resnet/train.py b/examples/images/resnet/train.py index fe0dabf08..fa300395c 100644 --- a/examples/images/resnet/train.py +++ b/examples/images/resnet/train.py @@ -104,7 +104,7 @@ def main(): '--plugin', type=str, default='torch_ddp', - choices=['torch_ddp', 'torch_ddp_fp16', 'low_level_zero'], + choices=['torch_ddp', 'torch_ddp_fp16', 'low_level_zero', 'gemini'], help="plugin to use") parser.add_argument('-r', '--resume', type=int, default=-1, help="resume from the epoch's checkpoint") parser.add_argument('-c', '--checkpoint', type=str, default='./checkpoint', help="checkpoint directory") @@ -141,7 +141,7 @@ def main(): if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': - plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, initial_scale=2**5) + plugin = GeminiPlugin(initial_scale=2**5) elif args.plugin == 'low_level_zero': plugin = LowLevelZeroPlugin(initial_scale=2**5) diff --git a/examples/images/vit/vit_benchmark.py b/examples/images/vit/vit_benchmark.py index 11d480bba..c2293b96a 100644 --- a/examples/images/vit/vit_benchmark.py +++ b/examples/images/vit/vit_benchmark.py @@ -1,19 +1,18 @@ import time import torch -import transformers -from transformers import ViTConfig, ViTForImageClassification import tqdm +import transformers +from args import parse_benchmark_args +from transformers import ViTConfig, ViTForImageClassification import colossalai -from colossalai.nn.optimizer import HybridAdam -from colossalai.logging import disable_existing_loggers, get_dist_logger -from colossalai.utils import get_current_device from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin from colossalai.cluster import DistCoordinator +from colossalai.logging import disable_existing_loggers, get_dist_logger +from colossalai.nn.optimizer import HybridAdam -from args import parse_benchmark_args def format_num(num: int, bytes=False): """Scale bytes to its proper format, e.g. 1253656 => '1.20MB'""" @@ -26,8 +25,13 @@ def format_num(num: int, bytes=False): def get_data(batch_size, num_labels, num_channels=3, height=224, width=224): - pixel_values = torch.randn(batch_size, num_channels, height, width, device=torch.cuda.current_device(), dtype=torch.float) - labels = torch.randint(0, num_labels, (batch_size, ), device=torch.cuda.current_device(), dtype=torch.int64) + pixel_values = torch.randn(batch_size, + num_channels, + height, + width, + device=torch.cuda.current_device(), + dtype=torch.float) + labels = torch.randint(0, num_labels, (batch_size,), device=torch.cuda.current_device(), dtype=torch.int64) return pixel_values, labels @@ -55,11 +59,11 @@ def main(): transformers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() - + # Whether to set limit on memory capacity if args.mem_cap > 0: colo_memory_cap(args.mem_cap) - + # Build ViT model config = ViTConfig.from_pretrained(args.model_name_or_path) model = ViTForImageClassification(config) @@ -75,11 +79,7 @@ def main(): if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': - plugin = GeminiPlugin(device=get_current_device(), - placement_policy='cpu', - pin_memory=True, - strict_ddp_mode=True, - initial_scale=2**5) + plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5) elif args.plugin == 'low_level_zero': plugin = LowLevelZeroPlugin(initial_scale=2**5) logger.info(f"Set plugin as {args.plugin}", ranks=[0]) @@ -90,16 +90,15 @@ def main(): # Set booster booster = Booster(plugin=plugin, **booster_kwargs) model, optimizer, _, _, _ = booster.boost(model, optimizer) - # Start training. logger.info(f"Start testing", ranks=[0]) progress_bar = tqdm.tqdm(total=args.max_train_steps, desc="Training Step", disable=not coordinator.is_master()) - + torch.cuda.synchronize() model.train() start_time = time.time() - + for _ in range(args.max_train_steps): pixel_values, labels = get_data(args.batch_size, args.num_labels, 3, 224, 224) @@ -111,18 +110,19 @@ def main(): torch.cuda.synchronize() progress_bar.update(1) - - # Compute Statistics + + # Compute Statistics end_time = time.time() throughput = "{:.4f}".format((world_size * args.max_train_steps * args.batch_size) / (end_time - start_time)) max_mem = format_num(torch.cuda.max_memory_allocated(device=torch.cuda.current_device()), bytes=True) - - logger.info(f"Testing finished, " - f"batch size per gpu: {args.batch_size}, " - f"plugin: {args.plugin}, " - f"throughput: {throughput}, " - f"maximum memory usage per gpu: {max_mem}.", - ranks=[0]) + + logger.info( + f"Testing finished, " + f"batch size per gpu: {args.batch_size}, " + f"plugin: {args.plugin}, " + f"throughput: {throughput}, " + f"maximum memory usage per gpu: {max_mem}.", + ranks=[0]) if __name__ == "__main__": diff --git a/examples/images/vit/vit_train_demo.py b/examples/images/vit/vit_train_demo.py index 3a739f10b..4dc0f67f4 100644 --- a/examples/images/vit/vit_train_demo.py +++ b/examples/images/vit/vit_train_demo.py @@ -1,20 +1,19 @@ import torch import torch.distributed as dist import transformers -from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor +from args import parse_demo_args +from data import BeansDataset, beans_collator from tqdm import tqdm +from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor import colossalai -from colossalai.nn.optimizer import HybridAdam -from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR -from colossalai.logging import disable_existing_loggers, get_dist_logger -from colossalai.utils import get_current_device from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin from colossalai.cluster import DistCoordinator - -from args import parse_demo_args -from data import BeansDataset, beans_collator +from colossalai.logging import disable_existing_loggers, get_dist_logger +from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR +from colossalai.nn.optimizer import HybridAdam +from colossalai.utils import get_current_device def move_to_cuda(batch, device): @@ -22,12 +21,12 @@ def move_to_cuda(batch, device): def train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator): - + torch.cuda.synchronize() model.train() with tqdm(dataloader, desc=f'Epoch [{epoch + 1}]', disable=not coordinator.is_master()) as pbar: - + for batch in pbar: # Foward @@ -47,7 +46,7 @@ def train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coor @torch.no_grad() def evaluate_model(epoch, model, eval_dataloader, num_labels, coordinator): - + model.eval() accum_loss = torch.zeros(1, device=get_current_device()) total_num = torch.zeros(1, device=get_current_device()) @@ -76,9 +75,7 @@ def evaluate_model(epoch, model, eval_dataloader, num_labels, coordinator): print(f"Evaluation result for epoch {epoch + 1}: \ average_loss={avg_loss}, \ accuracy={accuracy}.") - - - + def main(): @@ -102,14 +99,13 @@ def main(): train_dataset = BeansDataset(image_processor, split='train') eval_dataset = BeansDataset(image_processor, split='validation') - # Load pretrained ViT model config = ViTConfig.from_pretrained(args.model_name_or_path) config.num_labels = train_dataset.num_labels config.id2label = {str(i): c for i, c in enumerate(train_dataset.label_names)} config.label2id = {c: str(i) for i, c in enumerate(train_dataset.label_names)} - model = ViTForImageClassification.from_pretrained(args.model_name_or_path, - config=config, + model = ViTForImageClassification.from_pretrained(args.model_name_or_path, + config=config, ignore_mismatched_sizes=True) logger.info(f"Finish loading model from {args.model_name_or_path}", ranks=[0]) @@ -123,26 +119,22 @@ def main(): if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': - plugin = GeminiPlugin(device=get_current_device(), - placement_policy='cpu', - pin_memory=True, - strict_ddp_mode=True, - initial_scale=2**5) + plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5) elif args.plugin == 'low_level_zero': plugin = LowLevelZeroPlugin(initial_scale=2**5) logger.info(f"Set plugin as {args.plugin}", ranks=[0]) # Prepare dataloader train_dataloader = plugin.prepare_dataloader(train_dataset, - batch_size=args.batch_size, - shuffle=True, - drop_last=True, - collate_fn=beans_collator) + batch_size=args.batch_size, + shuffle=True, + drop_last=True, + collate_fn=beans_collator) eval_dataloader = plugin.prepare_dataloader(eval_dataset, - batch_size=args.batch_size, - shuffle=True, - drop_last=True, - collate_fn=beans_collator) + batch_size=args.batch_size, + shuffle=True, + drop_last=True, + collate_fn=beans_collator) # Set optimizer optimizer = HybridAdam(model.parameters(), lr=(args.learning_rate * world_size), weight_decay=args.weight_decay) @@ -156,11 +148,11 @@ def main(): # Set booster booster = Booster(plugin=plugin, **booster_kwargs) - model, optimizer, _, train_dataloader, lr_scheduler = booster.boost(model=model, - optimizer=optimizer, - dataloader=train_dataloader, - lr_scheduler=lr_scheduler) - + model, optimizer, _, train_dataloader, lr_scheduler = booster.boost(model=model, + optimizer=optimizer, + dataloader=train_dataloader, + lr_scheduler=lr_scheduler) + # Finetuning logger.info(f"Start finetuning", ranks=[0]) for epoch in range(args.num_epoch): @@ -174,4 +166,4 @@ def main(): if __name__ == "__main__": - main() \ No newline at end of file + main() diff --git a/examples/language/bert/README.md b/examples/language/bert/README.md index 81c3f03ff..da38e8375 100644 --- a/examples/language/bert/README.md +++ b/examples/language/bert/README.md @@ -7,6 +7,14 @@ This directory includes two parts: Using the Booster API finetune Huggingface Be bash test_ci.sh ``` +### Results on 2-GPU + +| Plugin | Accuracy | F1-score | +| -------------- | -------- | -------- | +| torch_ddp | 84.4% | 88.6% | +| torch_ddp_fp16 | 84.7% | 88.8% | +| gemini | 84.0% | 88.4% | + ## Benchmark ``` bash benchmark.sh @@ -14,9 +22,9 @@ bash benchmark.sh Now include these metrics in benchmark: CUDA mem occupy, throughput and the number of model parameters. If you have custom metrics, you can add them to benchmark_util. -## Results +### Results -### Bert +#### Bert | | max cuda mem | throughput(sample/s) | params | | :-----| -----------: | :--------: | :----: | @@ -25,10 +33,10 @@ Now include these metrics in benchmark: CUDA mem occupy, throughput and the numb | gemini | 11.0 GB | 12.9 | 82M | | low_level_zero | 11.29 G | 14.7 | 82M | -### AlBert +#### AlBert | | max cuda mem | throughput(sample/s) | params | | :-----| -----------: | :--------: | :----: | | ddp | OOM | | | | ddp_fp16 | OOM | | | | gemini | 69.39 G | 1.3 | 208M | -| low_level_zero | 56.89 G | 1.4 | 208M | \ No newline at end of file +| low_level_zero | 56.89 G | 1.4 | 208M | diff --git a/examples/language/bert/finetune.py b/examples/language/bert/finetune.py index b209ffde8..59f10a77c 100644 --- a/examples/language/bert/finetune.py +++ b/examples/language/bert/finetune.py @@ -38,8 +38,8 @@ def move_to_cuda(batch): @torch.no_grad() -def evaluate_model(model: nn.Module, test_dataloader: Union[DataLoader, List[DataLoader]], num_labels: int, task_name: str, - eval_splits: List[str], coordinator: DistCoordinator): +def evaluate_model(model: nn.Module, test_dataloader: Union[DataLoader, List[DataLoader]], num_labels: int, + task_name: str, eval_splits: List[str], coordinator: DistCoordinator): metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size) model.eval() @@ -142,7 +142,7 @@ def main(): if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': - plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, initial_scale=2**5) + plugin = GeminiPlugin(initial_scale=2**5) elif args.plugin == 'low_level_zero': plugin = LowLevelZeroPlugin(initial_scale=2**5) @@ -208,7 +208,7 @@ def main(): train_epoch(epoch, model, optimizer, lr_scheduler, train_dataloader, booster, coordinator) results = evaluate_model(model, test_dataloader, data_builder.num_labels, args.task, data_builder.eval_splits, - coordinator) + coordinator) if coordinator.is_master(): print(results) diff --git a/examples/language/gpt/gemini/run_gemini.sh b/examples/language/gpt/gemini/run_gemini.sh index ad4e9419c..57ce6ab64 100644 --- a/examples/language/gpt/gemini/run_gemini.sh +++ b/examples/language/gpt/gemini/run_gemini.sh @@ -4,9 +4,6 @@ export DISTPLAN=${DISTPLAN:-"CAI_Gemini"} # The following options only valid when DISTPLAN="colossalai" export GPUNUM=${GPUNUM:-1} -export TPDEGREE=${TPDEGREE:-1} -export PLACEMENT=${PLACEMENT:-"cpu"} -export USE_SHARD_INIT=${USE_SHARD_INIT:-False} export BATCH_SIZE=${BATCH_SIZE:-16} export MODEL_TYPE=${MODEL_TYPE:-"gpt2_medium"} export TRAIN_STEP=${TRAIN_STEP:-10} @@ -21,11 +18,8 @@ fi mkdir -p gemini_logs torchrun --standalone --nproc_per_node=${GPUNUM} ./train_gpt_demo.py \ ---tp_degree=${TPDEGREE} \ --model_type=${MODEL_TYPE} \ --batch_size=${BATCH_SIZE} \ ---placement=${PLACEMENT} \ -${USE_SHARD_INIT} \ --distplan=${DISTPLAN} \ --train_step=${TRAIN_STEP} \ 2>&1 | tee ./gemini_logs/${MODEL_TYPE}_${DISTPLAN}_gpu_${GPUNUM}_bs_${BATCH_SIZE}_tp_${TPDEGREE}_${PLACEMENT}.log diff --git a/examples/language/gpt/gemini/test_ci.sh b/examples/language/gpt/gemini/test_ci.sh index 0ddfd3a62..6fb08b975 100644 --- a/examples/language/gpt/gemini/test_ci.sh +++ b/examples/language/gpt/gemini/test_ci.sh @@ -6,29 +6,17 @@ for MODEL_TYPE in "gpt2_medium"; do for DISTPLAN in "CAI_Gemini"; do for BATCH_SIZE in 2; do for GPUNUM in 1 4; do - for TPDEGREE in 1 2; do - if [ ${TPDEGREE} -gt ${GPUNUM} ]; then - continue - fi - for PLACEMENT in "cpu" "auto"; do - MODEL_TYPE=${MODEL_TYPE} DISTPLAN=${DISTPLAN} BATCH_SIZE=${BATCH_SIZE} GPUNUM=${GPUNUM} TPDEGREE=${TPDEGREE} PLACEMENT=${PLACEMENT} \ - bash ./run_gemini.sh - done - done + MODEL_TYPE=${MODEL_TYPE} DISTPLAN=${DISTPLAN} BATCH_SIZE=${BATCH_SIZE} GPUNUM=${GPUNUM} \ + bash ./run_gemini.sh done done done - for DISTPLAN in "zero1" "zero2"; do + for DISTPLAN in "CAI_ZeRO2" "CAI_ZeRO1"; do for BATCH_SIZE in 2; do for GPUNUM in 1 4; do - for TPDEGREE in 1; do - if [ ${TPDEGREE} -gt ${GPUNUM} ]; then - continue - fi - MODEL_TYPE=${MODEL_TYPE} DISTPLAN=${DISTPLAN} BATCH_SIZE=${BATCH_SIZE} GPUNUM=${GPUNUM} TPDEGREE=${TPDEGREE}\ - bash ./run_gemini.sh - done + MODEL_TYPE=${MODEL_TYPE} DISTPLAN=${DISTPLAN} BATCH_SIZE=${BATCH_SIZE} GPUNUM=${GPUNUM} \ + bash ./run_gemini.sh done done done diff --git a/examples/language/gpt/gemini/train_gpt_demo.py b/examples/language/gpt/gemini/train_gpt_demo.py index 9e61779a1..347251ca5 100644 --- a/examples/language/gpt/gemini/train_gpt_demo.py +++ b/examples/language/gpt/gemini/train_gpt_demo.py @@ -1,4 +1,5 @@ import os +from contextlib import nullcontext from functools import partial from time import time @@ -13,11 +14,10 @@ from torch.nn.parallel import DistributedDataParallel as DDP import colossalai from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin +from colossalai.lazy import LazyInitContext from colossalai.logging import disable_existing_loggers, get_dist_logger from colossalai.nn.optimizer import HybridAdam -from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec from colossalai.utils import get_current_device -from colossalai.zero import ColoInitContext CAI_VERSION = colossalai.__version__ @@ -30,24 +30,6 @@ def parse_args(): default='CAI_Gemini', help="The distributed plan [colossalai, zero1, zero2, torch_ddp, torch_zero].", ) - parser.add_argument( - "--tp_degree", - type=int, - default=1, - help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.", - ) - parser.add_argument( - "--placement", - type=str, - default='cpu', - help="Placement Policy for Gemini. Valid when using colossalai as dist plan.", - ) - parser.add_argument( - "--shardinit", - action='store_true', - help= - "Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.", - ) parser.add_argument( "--batch_size", type=int, @@ -71,20 +53,6 @@ def parse_args(): return args -# Parameter Sharding Strategies for Tensor Parallelism -def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup): - spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - param.set_tensor_spec(*spec) - - -def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup): - split_param_single_dim_tp1d(0, param, pg) - - -def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup): - split_param_single_dim_tp1d(-1, param, pg) - - class GPTLMLoss(nn.Module): def __init__(self): @@ -140,47 +108,6 @@ def set_cpu_maximum_parallelism(): print(f"environmental variable OMP_NUM_THREADS is set to {max_concurrency}.") -# Tensor Parallel -def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup): - """tensor_parallelize - Sharding the Model Parameters. - - Args: - model (torch.nn.Module): a torch module to be sharded - """ - for mn, module in model.named_modules(): - for pn, param in module.named_parameters(recurse=False): - # NOTE() a param maybe shared by two modules - if hasattr(param, 'visited'): - continue - - # if shard init, then convert param to replica and use the dp-only ProcessGroup - param: ColoParameter = param - param.set_dist_spec(ReplicaSpec()) - param.set_process_group(pg) - - # shard it w.r.t tp pattern - if 'mlp.c_fc' in mn: - if 'weight' in pn or 'bias' in pn: - split_param_col_tp1d(param, pg) # column slice - # keep the shape of the output from c_fc - param.compute_spec.set_output_replicate(False) - else: - param.set_dist_spec(ReplicaSpec()) - elif 'mlp.c_proj' in mn: - if 'weight' in pn: - split_param_row_tp1d(param, pg) # row slice - else: - param.set_dist_spec(ReplicaSpec()) - elif 'wte' in mn or 'wpe' in mn: - split_param_col_tp1d(param, pg) # column slice - elif 'c_attn' in mn or 'c_proj' in mn: - split_param_col_tp1d(param, pg) # column slice - else: - param.set_dist_spec(ReplicaSpec()) - param.visited = True - - def main(): # version check # this example is supposed to work for versions greater than 0.2.0 @@ -213,30 +140,13 @@ def main(): # build criterion criterion = GPTLMLoss() - torch.manual_seed(123) if args.distplan.startswith("CAI"): - # all param must use the same process group. - world_size = torch.distributed.get_world_size() - shard_pg = ProcessGroup(tp_degree=world_size) if args.shardinit else None - default_dist_spec = ShardSpec([-1], [world_size]) if args.shardinit else None - - if args.shardinit and args.distplan != "CAI_Gemini": - raise RuntimeError("You can only use shardinit with CAI_Gemini") - + ctx = LazyInitContext(default_device=get_current_device()) if args.distplan == "CAI_Gemini" else nullcontext() # build GPT model - with ColoInitContext(device=get_current_device(), - dtype=torch.half, - default_dist_spec=default_dist_spec, - default_pg=shard_pg): + with ctx: model = model_builder(args.model_type)(checkpoint=True) - tp_pg = ProcessGroup(tp_degree=args.tp_degree) - # Tensor Parallelism (TP) - # You should notice that v0.1.10 is not compatible with TP degree > 1 - if args.tp_degree > 1: - tensor_parallelize(model, tp_pg) - # assign running configurations if args.distplan == "CAI_ZeRO1": zero_stage = 1 @@ -254,13 +164,7 @@ def main(): overlap_communication=True, verbose=True) elif args.distplan == "CAI_Gemini": - plugin = GeminiPlugin(device=get_current_device(), - placement_policy=args.placement, - pin_memory=True, - strict_ddp_mode=args.tp_degree == 1, - search_range_m=128, - hidden_dim=model.config.n_embd, - gpu_margin_mem_ratio=0.) + plugin = GeminiPlugin(search_range_m=128, hidden_dim=model.config.n_embd) else: raise RuntimeError diff --git a/examples/language/opt/opt_benchmark.py b/examples/language/opt/opt_benchmark.py index 2d69036b5..90ed10ec7 100755 --- a/examples/language/opt/opt_benchmark.py +++ b/examples/language/opt/opt_benchmark.py @@ -1,22 +1,18 @@ import time import torch +import tqdm import transformers +from args import parse_benchmark_args from transformers import AutoConfig, OPTForCausalLM from transformers.utils.versions import require_version -import tqdm import colossalai -from colossalai.nn.optimizer import HybridAdam -from colossalai.logging import disable_existing_loggers, get_dist_logger -from colossalai.tensor import ProcessGroup, ShardSpec -from colossalai.utils import get_current_device -from colossalai.zero import ColoInitContext from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin from colossalai.cluster import DistCoordinator - -from args import parse_benchmark_args +from colossalai.logging import disable_existing_loggers, get_dist_logger +from colossalai.nn.optimizer import HybridAdam require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt") @@ -61,11 +57,11 @@ def main(): transformers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() - + # Whether to set limit of memory capacity if args.mem_cap > 0: colo_memory_cap(args.mem_cap) - + # Build OPT model config = AutoConfig.from_pretrained(args.model_name_or_path) model = OPTForCausalLM(config=config) @@ -81,11 +77,7 @@ def main(): if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': - plugin = GeminiPlugin(device=get_current_device(), - placement_policy='cpu', - pin_memory=True, - strict_ddp_mode=True, - initial_scale=2**5) + plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5) elif args.plugin == 'low_level_zero': plugin = LowLevelZeroPlugin(initial_scale=2**5) logger.info(f"Set plugin as {args.plugin}", ranks=[0]) @@ -96,18 +88,18 @@ def main(): # Set booster booster = Booster(plugin=plugin, **booster_kwargs) model, optimizer, _, _, _ = booster.boost(model, optimizer) - + SEQ_LEN = 1024 VOCAB_SIZE = 50257 # Start training. logger.info(f"Start testing", ranks=[0]) progress_bar = tqdm.tqdm(total=args.max_train_steps, desc="Training Step", disable=not coordinator.is_master()) - + torch.cuda.synchronize() model.train() start_time = time.time() - + for _ in range(args.max_train_steps): input_ids, attn_mask = get_data(args.batch_size, SEQ_LEN, VOCAB_SIZE) @@ -119,18 +111,19 @@ def main(): torch.cuda.synchronize() progress_bar.update(1) - - # Compute Statistics + + # Compute Statistics end_time = time.time() throughput = "{:.4f}".format((world_size * args.max_train_steps * args.batch_size) / (end_time - start_time)) max_mem = format_num(torch.cuda.max_memory_allocated(device=torch.cuda.current_device()), bytes=True) - - logger.info(f"Testing finished, " - f"batch size per gpu: {args.batch_size}, " - f"plugin: {args.plugin}, " - f"throughput: {throughput}, " - f"maximum memory usage per gpu: {max_mem}.", - ranks=[0]) + + logger.info( + f"Testing finished, " + f"batch size per gpu: {args.batch_size}, " + f"plugin: {args.plugin}, " + f"throughput: {throughput}, " + f"maximum memory usage per gpu: {max_mem}.", + ranks=[0]) if __name__ == "__main__": diff --git a/examples/language/opt/opt_train_demo.py b/examples/language/opt/opt_train_demo.py index fa7feca9c..80063407e 100644 --- a/examples/language/opt/opt_train_demo.py +++ b/examples/language/opt/opt_train_demo.py @@ -1,25 +1,20 @@ import time -import torch import datasets +import torch import transformers -from transformers import AutoConfig, OPTForCausalLM, AutoTokenizer -from transformers import get_linear_schedule_with_warmup -from transformers.utils.versions import require_version +from args import parse_demo_args +from data import NetflixDataset, netflix_collator from tqdm import tqdm +from transformers import AutoConfig, AutoTokenizer, OPTForCausalLM, get_linear_schedule_with_warmup +from transformers.utils.versions import require_version import colossalai -from colossalai.nn.optimizer import HybridAdam -from colossalai.logging import disable_existing_loggers, get_dist_logger -from colossalai.tensor import ProcessGroup, ShardSpec -from colossalai.utils import get_current_device -from colossalai.zero import ColoInitContext from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin from colossalai.cluster import DistCoordinator - -from args import parse_demo_args -from data import NetflixDataset, netflix_collator +from colossalai.logging import disable_existing_loggers, get_dist_logger +from colossalai.nn.optimizer import HybridAdam require_version("datasets>=1.8.0", "To fix: pip install -r requirements.txt") require_version("transformers>=4.20.0", "To fix: pip install -r requirements.txt") @@ -30,18 +25,18 @@ def move_to_cuda(batch, device): def train_epoch(epoch, model, optimizer, lr_scheduler, dataloader, booster, coordinator): - + torch.cuda.synchronize() model.train() with tqdm(dataloader, desc=f'Epoch [{epoch + 1}]', disable=not coordinator.is_master()) as pbar: - + for batch in pbar: # Forward optimizer.zero_grad() batch = move_to_cuda(batch, torch.cuda.current_device()) - + outputs = model(use_cache=False, **batch) loss = outputs['loss'] @@ -72,7 +67,7 @@ def main(): else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() - + # Build OPT model config = AutoConfig.from_pretrained(args.model_name_or_path) model = OPTForCausalLM.from_pretrained(args.model_name_or_path, config=config) @@ -88,43 +83,35 @@ def main(): if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': - plugin = GeminiPlugin(device=get_current_device(), - placement_policy='cpu', - pin_memory=True, - strict_ddp_mode=True, - initial_scale=2**5) + plugin = GeminiPlugin(offload_optim_frac=1.0, pin_memory=True, initial_scale=2**5) elif args.plugin == 'low_level_zero': plugin = LowLevelZeroPlugin(initial_scale=2**5) logger.info(f"Set plugin as {args.plugin}", ranks=[0]) # Prepare tokenizer and dataloader - tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) + tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) dataset = NetflixDataset(tokenizer) dataloader = plugin.prepare_dataloader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, collate_fn=netflix_collator) - + # Set optimizer - optimizer = HybridAdam(model.parameters(), - lr=(args.learning_rate * world_size), - weight_decay=args.weight_decay) + optimizer = HybridAdam(model.parameters(), lr=(args.learning_rate * world_size), weight_decay=args.weight_decay) # Set lr scheduler total_steps = len(dataloader) * args.num_epoch num_warmup_steps = int(args.warmup_ratio * total_steps) - lr_scheduler = get_linear_schedule_with_warmup( - optimizer, - num_warmup_steps=num_warmup_steps, - num_training_steps=len(dataloader) * args.num_epoch - ) + lr_scheduler = get_linear_schedule_with_warmup(optimizer, + num_warmup_steps=num_warmup_steps, + num_training_steps=len(dataloader) * args.num_epoch) # Set booster booster = Booster(plugin=plugin, **booster_kwargs) - model, optimizer, _, dataloader, lr_scheduler = booster.boost(model=model, - optimizer=optimizer, - dataloader=dataloader, + model, optimizer, _, dataloader, lr_scheduler = booster.boost(model=model, + optimizer=optimizer, + dataloader=dataloader, lr_scheduler=lr_scheduler) # Start finetuning diff --git a/examples/language/palm/train.py b/examples/language/palm/train.py index a0600db1b..526f79140 100644 --- a/examples/language/palm/train.py +++ b/examples/language/palm/train.py @@ -1,5 +1,5 @@ import gzip -import random +from contextlib import nullcontext from functools import partial from time import time @@ -8,20 +8,17 @@ import torch import torch.nn as nn import torch.optim as optim import tqdm -from packaging import version - -from colossalai.nn import HybridAdam from palm_pytorch import PaLM from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper from torch.utils.data import DataLoader, Dataset import colossalai -from colossalai.logging import disable_existing_loggers, get_dist_logger -from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec -from colossalai.utils import MultiTimer, get_current_device -from colossalai.zero import ColoInitContext, GeminiAdamOptimizer, ZeroDDP from colossalai.booster import Booster from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin +from colossalai.lazy import LazyInitContext +from colossalai.logging import disable_existing_loggers, get_dist_logger +from colossalai.nn import HybridAdam +from colossalai.utils import get_current_device # constants @@ -44,23 +41,10 @@ def parse_args(): help="The distributed plan [colossalai, pytorch].", ) parser.add_argument( - "--tp_degree", - type=int, - default=1, - help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.", - ) - parser.add_argument( - "--placement", - type=str, - default='cpu', - help="Placement Policy for Gemini. Valid when using colossalai as dist plan.", - ) - parser.add_argument( - "--shardinit", - type=bool, - default=False, - help= - "Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.", + "--offload_optim_frac", + type=float, + default=1.0, + help="Fraction of optimizer states to be offloaded. This is only used for gemini.", ) parser.add_argument('-p', '--plugin', @@ -111,51 +95,6 @@ def get_model_size(model: nn.Module): return total_numel - - -# Parameter Sharding Strategies for Tensor Parallelism -def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup): - spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - param.set_tensor_spec(*spec) - - -def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup): - split_param_single_dim_tp1d(0, param, pg) - - -def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup): - split_param_single_dim_tp1d(-1, param, pg) - - -# Tensor Parallel -def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup): - """tensor_parallelize - Sharding the Model Parameters. - Args: - model (torch.nn.Module): a torch module to be sharded - """ - for mn, module in model.named_modules(): - for pn, param in module.named_parameters(recurse=False): - if hasattr(param, 'visited'): - continue - param.set_dist_spec(ReplicaSpec()) - if 'net.0' in mn: - split_param_col_tp1d(param, pg) # column slice - elif 'to_q' in mn: - split_param_col_tp1d(param, pg) # column slice - elif 'to_kv' in mn: - split_param_row_tp1d(param, pg) # row slice - elif 'to_out' in mn: - split_param_row_tp1d(param, pg) # row slice - elif '1.1' in mn: - split_param_col_tp1d(param, pg) # column slice - elif '1.2' in mn: - split_param_row_tp1d(param, pg) # row slice - else: - param.set_dist_spec(ReplicaSpec()) - param.visited = True - - args = parse_args() if args.distplan not in ["colossalai", "pytorch"]: raise TypeError(f"{args.distplan} is error") @@ -212,23 +151,18 @@ if args.distplan == "colossalai": if args.plugin.startswith('torch_ddp'): plugin = TorchDDPPlugin() elif args.plugin == 'gemini': - plugin = GeminiPlugin(placement_policy=args.placement, strict_ddp_mode=True, initial_scale=2 ** 5) + plugin = GeminiPlugin(offload_optim_frac=args.offload_optim_frac, initial_scale=2**5) elif args.plugin == 'low_level_zero': - plugin = LowLevelZeroPlugin(initial_scale=2 ** 5) + plugin = LowLevelZeroPlugin(initial_scale=2**5) logger.info(f"plugin: {plugin}") booster = Booster(plugin=plugin, **booster_kwargs) - default_pg = ProcessGroup(tp_degree=args.tp_degree) - default_dist_spec = ShardSpec([-1], [args.tp_degree]) if args.shardinit else None - ctx = ColoInitContext(device='cpu', default_dist_spec=default_dist_spec, default_pg=default_pg) + ctx = LazyInitContext(default_device=get_current_device()) if args.plugin == 'gemini' else nullcontext() with ctx: model = PaLM(num_tokens=50304, dim=4096, depth=64) model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN) - pg = default_pg - tensor_parallelize(model, pg) - # optimizer optimizer = HybridAdam(model.parameters(), lr=LEARNING_RATE, initial_scale=2**5) diff --git a/examples/tutorial/opt/opt/requirements.txt b/examples/tutorial/opt/opt/requirements.txt index d0ed2c717..ae290080d 100644 --- a/examples/tutorial/opt/opt/requirements.txt +++ b/examples/tutorial/opt/opt/requirements.txt @@ -3,5 +3,5 @@ torch >= 1.8.1 datasets >= 1.8.0 sentencepiece != 0.1.92 protobuf -accelerate == 0.13.2 +accelerate transformers diff --git a/examples/tutorial/opt/opt/run_clm.py b/examples/tutorial/opt/opt/run_clm.py index fdc86adab..91380e243 100755 --- a/examples/tutorial/opt/opt/run_clm.py +++ b/examples/tutorial/opt/opt/run_clm.py @@ -30,7 +30,7 @@ from itertools import chain import datasets import torch import torch.distributed as dist -import transformers +import transformers.utils.logging as logging from accelerate.utils import set_seed from context import barrier_context from datasets import load_dataset @@ -57,7 +57,7 @@ from colossalai.logging import disable_existing_loggers, get_dist_logger from colossalai.nn.optimizer import HybridAdam from colossalai.tensor import ProcessGroup from colossalai.utils import get_current_device, get_dataloader -from colossalai.zero import ColoInitContext, ZeroDDP, ZeroOptimizer +from colossalai.zero import GeminiOptimizer require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") @@ -292,10 +292,10 @@ def main(): if is_main_process: datasets.utils.logging.set_verbosity_warning() - transformers.utils.logging.set_verbosity_info() + logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() - transformers.utils.logging.set_verbosity_error() + logging.set_verbosity_error() if args.mem_cap > 0: colo_memory_cap(args.mem_cap) @@ -391,16 +391,28 @@ def main(): else: init_dev = get_current_device() + cai_version = colossalai.__version__ + logger.info(f'using Colossal-AI version {cai_version}') # build model + if version.parse(cai_version) >= version.parse("0.3.1"): + from contextlib import nullcontext + + from colossalai.lazy import LazyInitContext + ctx = LazyInitContext( + default_device=init_dev + ) if args.model_name_or_path is None or args.model_name_or_path == 'facebook/opt-13b' else nullcontext() + else: + from colossalai.zero import ColoInitContext + ctx = ColoInitContext(device=init_dev) if args.model_name_or_path is None or args.model_name_or_path == 'facebook/opt-13b': # currently, there has a bug in pretrained opt-13b # we can not import it until huggingface fix it logger.info("Train a new model from scratch", ranks=[0]) - with ColoInitContext(device=init_dev): + with ctx: model = OPTForCausalLM(config) else: logger.info("Finetune a pre-trained model", ranks=[0]) - with ColoInitContext(device=init_dev): + with ctx: model = OPTForCausalLM.from_pretrained(args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, @@ -410,9 +422,10 @@ def main(): model.gradient_checkpointing_enable() PLACEMENT_POLICY = 'auto' - cai_version = colossalai.__version__ - logger.info(f'using Colossal-AI version {cai_version}') - if version.parse(cai_version) > version.parse("0.1.10"): + if version.parse(cai_version) >= version.parse("0.3.1"): + from colossalai.zero import GeminiDDP + model = GeminiDDP(model, offload_optim_frac=1.0, pin_memory=True) + elif version.parse(cai_version) > version.parse("0.1.10"): try: from colossalai.nn.parallel import GeminiDDP except ImportError: @@ -536,7 +549,6 @@ def main(): ] optimizer = HybridAdam(optimizer_grouped_parameters, lr=args.learning_rate) - optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**14) # Scheduler and math around the number of training steps. overrode_max_train_steps = False @@ -551,6 +563,7 @@ def main(): num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) + optimizer = GeminiOptimizer(optimizer, model, initial_scale=2**14) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) diff --git a/examples/tutorial/opt/opt/test_ci.sh b/examples/tutorial/opt/opt/test_ci.sh index e505da136..431b37c12 100755 --- a/examples/tutorial/opt/opt/test_ci.sh +++ b/examples/tutorial/opt/opt/test_ci.sh @@ -4,9 +4,9 @@ set -xue pip install -r requirements.txt -BS=8 +BS=4 MEMCAP=0 -GPUNUM=2 +GPUNUM=4 MODLE="facebook/opt-125m" torchrun \ diff --git a/pytest.ini b/pytest.ini index e8a60c853..b30786ea0 100644 --- a/pytest.ini +++ b/pytest.ini @@ -4,4 +4,5 @@ markers = gpu: tests which requires a single GPU dist: tests which are run in a multi-GPU or multi-machine environment experiment: tests for experimental features -addopts = --ignore=tests/test_analyzer --ignore=tests/test_auto_parallel --ignore=tests/test_autochunk --ignore=tests/test_moe +addopts = --ignore=tests/test_analyzer --ignore=tests/test_auto_parallel --ignore=tests/test_autochunk --ignore=tests/test_moe --ignore=tests/test_fx + diff --git a/tests/kit/model_zoo/transformers/albert.py b/tests/kit/model_zoo/transformers/albert.py index e85f564e3..70f9ee11a 100644 --- a/tests/kit/model_zoo/transformers/albert.py +++ b/tests/kit/model_zoo/transformers/albert.py @@ -17,6 +17,13 @@ def data_gen_fn(): return dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask) +def data_gen_for_pretrain(): + inputs = data_gen_fn() + inputs['labels'] = inputs['input_ids'].clone() + inputs['sentence_order_label'] = torch.zeros(BATCH_SIZE, dtype=torch.int64) + return inputs + + output_transform_fn = lambda x: x config = transformers.AlbertConfig(embedding_size=128, @@ -26,14 +33,14 @@ config = transformers.AlbertConfig(embedding_size=128, intermediate_size=256) model_zoo.register(name='transformers_albert', - model_fn=lambda: transformers.AlbertModel(config), + model_fn=lambda: transformers.AlbertModel(config, add_pooling_layer=False), data_gen_fn=data_gen_fn, output_transform_fn=output_transform_fn, model_attribute=ModelAttribute(has_control_flow=True)) model_zoo.register(name='transformers_albert_for_pretraining', model_fn=lambda: transformers.AlbertForPreTraining(config), - data_gen_fn=data_gen_fn, - output_transform_fn=output_transform_fn, + data_gen_fn=data_gen_for_pretrain, + output_transform_fn=lambda x: dict(loss=x.loss), model_attribute=ModelAttribute(has_control_flow=True)) model_zoo.register(name='transformers_albert_for_masked_lm', model_fn=lambda: transformers.AlbertForMaskedLM(config), diff --git a/tests/kit/model_zoo/transformers/bert.py b/tests/kit/model_zoo/transformers/bert.py index e16d3b269..993c90b0a 100644 --- a/tests/kit/model_zoo/transformers/bert.py +++ b/tests/kit/model_zoo/transformers/bert.py @@ -113,6 +113,7 @@ def data_gen_for_qa(): output_transform_fn = lambda x: x # define loss funciton + loss_fn_for_bert_model = lambda x: torch.nn.functional.mse_loss(x.last_hidden_state, torch.ones_like(x.last_hidden_state )) loss_fn = lambda x: x.loss @@ -126,7 +127,7 @@ config = transformers.BertConfig(hidden_size=128, # register the BERT variants model_zoo.register(name='transformers_bert', - model_fn=lambda: transformers.BertModel(config), + model_fn=lambda: transformers.BertModel(config, add_pooling_layer=False), data_gen_fn=data_gen, output_transform_fn=output_transform_fn, loss_fn=loss_fn_for_bert_model, diff --git a/tests/kit/model_zoo/transformers/gpt.py b/tests/kit/model_zoo/transformers/gpt.py index 5c3eb4438..ca3a0d7ea 100644 --- a/tests/kit/model_zoo/transformers/gpt.py +++ b/tests/kit/model_zoo/transformers/gpt.py @@ -57,6 +57,12 @@ def data_gen_for_sequence_classification(): return data +def date_gen_for_double_heads(): + data = data_gen_for_lm() + data['mc_labels'] = torch.zeros(data['input_ids'].shape[0], dtype=torch.int64) + return data + + # define output transform function output_transform_fn = lambda x: x @@ -94,8 +100,8 @@ model_zoo.register(name='transformers_gpt_lm', model_attribute=ModelAttribute(has_control_flow=True)) model_zoo.register(name='transformers_gpt_double_heads', model_fn=lambda: transformers.GPT2DoubleHeadsModel(config), - data_gen_fn=data_gen_for_lm, - output_transform_fn=output_transform_fn, + data_gen_fn=date_gen_for_double_heads, + output_transform_fn=lambda x: dict(loss=x.loss + x.mc_loss), loss_fn=loss_fn, model_attribute=ModelAttribute(has_control_flow=True)) model_zoo.register(name='transformers_gpt_for_question_answering', diff --git a/tests/test_booster/test_plugin/test_gemini_plugin.py b/tests/test_booster/test_plugin/test_gemini_plugin.py index fee153baf..4fc67bd29 100644 --- a/tests/test_booster/test_plugin/test_gemini_plugin.py +++ b/tests/test_booster/test_plugin/test_gemini_plugin.py @@ -12,19 +12,16 @@ from colossalai.lazy.lazy_init import LazyInitContext from colossalai.nn.optimizer import HybridAdam from colossalai.tensor.colo_parameter import ColoParameter from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn -from colossalai.zero import ColoInitContext from tests.kit.model_zoo import model_zoo def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]: try: - if init_method == 'colo': - ctx = ColoInitContext() - elif init_method == 'lazy': + if init_method == 'lazy': ctx = LazyInitContext() else: ctx = nullcontext() - plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, max_norm=1.0, initial_scale=2**5) + plugin = GeminiPlugin(max_norm=1.0, initial_scale=2**5) booster = Booster(plugin=plugin) with ctx: model = model_fn() @@ -50,6 +47,7 @@ def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[ optimizer.step() except Exception as e: + # raise e return repr(e) @@ -57,8 +55,9 @@ def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[ # @parameterize('init_method', ['lazy', 'none', 'colo']) +@parameterize('subset', ['torchvision', 'transformers', 'diffusers']) @parameterize('init_method', ['none']) -def check_gemini_plugin(init_method: str = 'none', early_stop: bool = True): +def check_gemini_plugin(subset: str, init_method: str = 'none', early_stop: bool = True): """check gemini plugin over model zoo Args: @@ -71,29 +70,23 @@ def check_gemini_plugin(init_method: str = 'none', early_stop: bool = True): passed_models = [] failed_info = {} # (model_name, error) pair - for name, (model_fn, data_gen_fn, output_transform_fn, _, _) in model_zoo.items(): + for name, (model_fn, data_gen_fn, output_transform_fn, _, _) in model_zoo.get_sub_registry(subset).items(): # These models lead to CUDA error if name in ('diffusers_auto_encoder_kl', 'diffusers_vq_model', 'diffusers_unet2d_model', 'timm_resmlp', - 'timm_gmixer_12_224', 'timm_gmlp_b16_224', 'timm_mixer_b16_224', 'timm_convnext'): + 'timm_gmixer_12_224', 'timm_gmlp_b16_224', 'timm_mixer_b16_224', 'timm_convnext', + 'torchvision_convnext_base'): continue # These models are not compatible with gemini if name in [ - 'diffusers_clip_vision_model', 'timm_resnet', 'timm_beit', 'timm_beitv2', 'timm_eca_nfnet', - 'timm_efficientformer', 'timm_hrnet_w18_small', 'timm_nf_ecaresnet101', 'timm_nf_regnet_b0', - 'timm_skresnet18', 'timm_wide_resnet50_2', 'timm_convit', 'timm_dm_nfnet', 'timm_swin_transformer', - 'torchaudio_conformer', 'torchaudio_deepspeech', 'torchaudio_wavernn', 'torchaudio_tacotron', - 'deepfm_interactionarch', 'deepfm_simpledeepfmnn', 'dlrm', 'dlrm_interactionarch', - 'torchvision_googlenet', 'torchvision_inception_v3', 'torchvision_mobilenet_v3_small', - 'torchvision_resnet18', 'torchvision_resnext50_32x4d', 'torchvision_wide_resnet50_2', - 'torchvision_vit_b_16', 'torchvision_convnext_base', 'torchvision_swin_s', 'transformers_albert', - 'transformers_albert_for_pretraining', 'transformers_bert', 'transformers_bert_for_pretraining', - 'transformers_gpt_double_heads', 'torchaudio_hubert_base', 'torchaudio_wav2vec2_base', - 'transformers_t5_for_conditional_generation', 'transformers_t5', 'transformers_t5_encoder_model', - 'transformers_vit', 'transformers_vit_for_masked_image_modeling', - 'transformers_vit_for_image_classification', 'transformers_chatglm', - 'transformers_chatglm_for_conditional_generation', 'transformers_blip2', - 'transformers_blip2_conditional_gerneration', 'transformers_sam', 'transformers_whisper', - 'transformers_whisper_for_conditional_generation', 'transformers_whisper_for_audio_classification' + 'timm_convit', + 'timm_dm_nfnet', + 'torchvision_vit_b_16', + 'transformers_t5', + 'transformers_t5_for_conditional_generation', + 'transformers_t5_encoder_model', # does not support apex rmsnorm + 'transformers_chatglm', + 'transformers_sam', + 'transformers_vit' ]: continue @@ -105,7 +98,6 @@ def check_gemini_plugin(init_method: str = 'none', early_stop: bool = True): ]: continue err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) - torch.cuda.empty_cache() if err is None: passed_models.append(name) diff --git a/tests/test_checkpoint_io/test_gemini_checkpoint_io.py b/tests/test_checkpoint_io/test_gemini_checkpoint_io.py index 7b664419b..6720be584 100644 --- a/tests/test_checkpoint_io/test_gemini_checkpoint_io.py +++ b/tests/test_checkpoint_io/test_gemini_checkpoint_io.py @@ -18,12 +18,45 @@ from colossalai.testing import ( ) from tests.kit.model_zoo import model_zoo +MODEL_PLACEMENT_CONFIGS = [ + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0 + }, # zero2 + { + 'placement_policy': 'static', + 'shard_param_frac': 1.0 + }, # zero3 + { + 'placement_policy': 'static', + 'shard_param_frac': 0.5 + }, # zero3-half +] + +OPTIM_PLACEMENT_CONFIGS = [ + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 0.0 + }, # zero2 + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 1.0 + }, # zero2-offload + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 0.5 + }, # zero2-offload-half +] + @clear_cache_before_run() -@parameterize('placement_policy', ['cuda', 'cpu']) +@parameterize('placement_config', MODEL_PLACEMENT_CONFIGS) @parameterize('model_name', ['transformers_bert_for_sequence_classification']) @parameterize('use_safetensors', [False, True]) -def exam_state_dict_with_origin(placement_policy, model_name, use_safetensors: bool): +def exam_state_dict_with_origin(placement_config, model_name, use_safetensors: bool): from transformers import BertForSequenceClassification (model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) bert_model = model_fn() @@ -32,7 +65,7 @@ def exam_state_dict_with_origin(placement_policy, model_name, use_safetensors: b pretrained_path = os.path.join(tempdir, 'pretrained') bert_model.config.save_pretrained(save_directory=pretrained_path) - plugin = GeminiPlugin(placement_policy=placement_policy) + plugin = GeminiPlugin(**placement_config) booster = Booster(plugin=plugin) bert_model, _, _, _, _ = booster.boost(bert_model) model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2 @@ -46,19 +79,19 @@ def exam_state_dict_with_origin(placement_policy, model_name, use_safetensors: b dist.barrier() new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path) - check_state_dict_equal(bert_model.unwrap().state_dict(only_rank_0=False, dtype=torch.float32), + check_state_dict_equal(bert_model.state_dict(only_rank_0=False, dtype=torch.float32), new_bert_model.state_dict(), False) @clear_cache_before_run() -@parameterize('placement_policy', ['cuda', 'cpu']) +@parameterize('placement_config', OPTIM_PLACEMENT_CONFIGS) @parameterize('shard', [False, True]) @parameterize('model_name', ['transformers_gpt']) @parameterize('size_per_shard', [32]) -def exam_state_dict(placement_policy, shard: bool, model_name: str, size_per_shard: int): +def exam_state_dict(placement_config, shard: bool, model_name: str, size_per_shard: int): (model_fn, data_gen_fn, output_transform_fn, _, _) = next(iter(model_zoo.get_sub_registry(model_name).values())) criterion = lambda x: x.mean() - plugin = GeminiPlugin(placement_policy=placement_policy, precision="fp16", initial_scale=(2**14)) + plugin = GeminiPlugin(**placement_config, precision="fp16", initial_scale=(2**14)) booster = Booster(plugin=plugin) model = model_fn() @@ -87,12 +120,11 @@ def exam_state_dict(placement_policy, shard: bool, model_name: str, size_per_sha dist.barrier() booster.load_model(new_model, model_ckpt_path) - check_state_dict_equal(model.unwrap().state_dict(only_rank_0=False), - new_model.unwrap().state_dict(only_rank_0=False), False) + check_state_dict_equal(model.state_dict(only_rank_0=False), new_model.state_dict(only_rank_0=False), False) booster.load_optimizer(new_optimizer, optimizer_ckpt_path) - check_state_dict_equal(optimizer.unwrap().state_dict(only_rank_0=False), - new_optimizer.unwrap().state_dict(only_rank_0=False), False) + check_state_dict_equal(optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(only_rank_0=False), + False) # Check the new model/optimizer can successfully run. data = data_gen_fn() diff --git a/tests/test_checkpoint_io/test_gemini_torch_compability.py b/tests/test_checkpoint_io/test_gemini_torch_compability.py index 464fccb39..4569ea12d 100644 --- a/tests/test_checkpoint_io/test_gemini_torch_compability.py +++ b/tests/test_checkpoint_io/test_gemini_torch_compability.py @@ -60,12 +60,11 @@ def exam_torch_load_from_gemini(shard: bool, model_name: str): new_booster.load_model(new_model, model_ckpt_path, strict=True) # Add prefix to get aligned with pytorch parameter names. - check_state_dict_equal( - model.unwrap().state_dict(only_rank_0=False, prefix='module.module.', dtype=torch.float32), - new_model.state_dict(), False) + check_state_dict_equal(model.state_dict(only_rank_0=False, prefix='module.module.', dtype=torch.float32), + new_model.state_dict(), False) new_booster.load_optimizer(new_optimizer, optimizer_ckpt_path) - check_state_dict_equal(optimizer.unwrap().state_dict(only_rank_0=False), new_optimizer.state_dict(), False) + check_state_dict_equal(optimizer.state_dict(only_rank_0=False), new_optimizer.state_dict(), False) # Check the new model/optimizer can successfully run. data = data_gen_fn() @@ -124,13 +123,12 @@ def exam_gemini_load_from_torch(shard: bool, model_name: str): new_booster.load_model(new_model, model_ckpt_path, strict=True) # Add prefix to get aligned with pytorch parameter names. - check_state_dict_equal( - new_model.unwrap().state_dict(only_rank_0=False, prefix='module.module.', dtype=torch.float32), - model.state_dict(), False) + check_state_dict_equal(new_model.state_dict(only_rank_0=False, prefix='module.module.', dtype=torch.float32), + model.state_dict(), False) new_booster.load_optimizer(new_optimizer, optimizer_ckpt_path) old_state_dict = optimizer.state_dict() - new_state_dict = new_optimizer.unwrap().state_dict(only_rank_0=False) + new_state_dict = new_optimizer.state_dict(only_rank_0=False) # Comparison of param_groups needs special care here, # since not all hyperparameters in Adam are used by HybridAdam @@ -138,7 +136,7 @@ def exam_gemini_load_from_torch(shard: bool, model_name: str): for old_group, new_group in zip(old_state_dict['param_groups'], new_state_dict['param_groups']): for k in hyperparameters_to_examine: assert k in old_group and k in new_group, \ - f"Old group's keys: {list(old_group.keys())}, New group's keys: {list(new_group.keys())}" + f"Old group's keys: {list(old_group.keys())}, New group's keys: {list(new_group.keys())}" assert old_group[k] == new_group[k] check_state_dict_equal(old_state_dict['state'], new_state_dict['state'], False) diff --git a/tests/test_data_pipeline_tensor_parallel/test_cifar_with_data_pipeline_tensor_v2.py b/tests/test_data_pipeline_tensor_parallel/test_cifar_with_data_pipeline_tensor_v2.py deleted file mode 100644 index 62bbb8f50..000000000 --- a/tests/test_data_pipeline_tensor_parallel/test_cifar_with_data_pipeline_tensor_v2.py +++ /dev/null @@ -1,104 +0,0 @@ -import os -from pathlib import Path - -import pytest -import torch -from torchvision import transforms -from torchvision.datasets import CIFAR10 - -import colossalai -from colossalai.amp import AMP_TYPE -from colossalai.context import ParallelMode -from colossalai.core import global_context as gpc -from colossalai.engine.schedule._pipeline_schedule_v2 import PipelineScheduleV2 -from colossalai.logging import disable_existing_loggers, get_dist_logger -from colossalai.nn import CrossEntropyLoss -from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR -from colossalai.pipeline.pipelinable import PipelinableContext -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.trainer import Trainer, hooks -from colossalai.utils import get_dataloader - -disable_existing_loggers() -BATCH_SIZE = 4 -NUM_EPOCHS = 10 -WARMUP_EPOCHS = 5 -CONFIG = dict(NUM_MICRO_BATCHES=2, - parallel=dict(pipeline=2, tensor=dict(size=1, mode='1d')), - fp16=dict(mode=AMP_TYPE.NAIVE), - gradient_accumulation=2) - - -def run_trainer(rank, world_size, port): - disable_existing_loggers() - colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - - disable_existing_loggers() - # get logger - logger = get_dist_logger() - - pipelinable = PipelinableContext() - try: - from titans.model.vit import vit_tiny_patch4_32 - except ImportError: - logger.warning('skip the test_cifar_with_data_pipeline_tensor test because titan is not installed') - logger.warning('please install titan from https://github.com/hpcaitech/Titans') - return - with pipelinable: - model = vit_tiny_patch4_32() - pipelinable.to_layer_list() - pipelinable.policy = "uniform" - model = pipelinable.partition(1, gpc.pipeline_parallel_size, gpc.get_local_rank(ParallelMode.PIPELINE)) - - # create dataloaders - root = Path(os.environ['DATA']) - transform_train = transforms.Compose([ - transforms.RandomCrop(32, padding=4, pad_if_needed=True), - transforms.AutoAugment(policy=transforms.AutoAugmentPolicy.CIFAR10), - transforms.ToTensor(), - transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), - ]) - train_dataset = CIFAR10(root=root, train=True, download=True, transform=transform_train) - train_dataloader = get_dataloader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True) - - # create loss function - criterion = CrossEntropyLoss(label_smoothing=0.1) - - # create optimizer - optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=0) - - # create lr scheduler - lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer, total_steps=NUM_EPOCHS, warmup_steps=WARMUP_EPOCHS) - - # initialize - engine, train_dataloader, *_ = colossalai.initialize(model=model, - optimizer=optimizer, - criterion=criterion, - train_dataloader=train_dataloader) - - engine._schedule = PipelineScheduleV2(num_microbatches=gpc.config.NUM_MICRO_BATCHES) - - logger = get_dist_logger() - - trainer = Trainer(engine=engine, logger=logger) - - hook_list = [ - hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=False), - ] - - trainer.fit(train_dataloader=train_dataloader, - max_steps=2, - epochs=NUM_EPOCHS, - hooks=hook_list, - display_progress=True) - - -@pytest.mark.dist -@rerun_if_address_is_in_use() -def test_hybrid_parallel(): - spawn(run_trainer, 2) - disable_existing_loggers() - - -if __name__ == '__main__': - test_hybrid_parallel() diff --git a/tests/test_ddp/test_ddp_ignore_params.py b/tests/test_ddp/test_ddp_ignore_params.py deleted file mode 100644 index 39efcd41a..000000000 --- a/tests/test_ddp/test_ddp_ignore_params.py +++ /dev/null @@ -1,92 +0,0 @@ -import os -import random -from typing import Callable, Type - -import numpy as np -import pytest -import torch -import torch.distributed as dist - -import colossalai -from colossalai.nn.parallel import ColoDDP -from colossalai.tensor import ProcessGroup -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext, ZeroDDP -from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration -from colossalai.zero.gemini.gemini_mgr import GeminiManager - - -def set_seed(seed): - random.seed(seed) - os.environ['PYTHONHASHSEED'] = str(seed) - np.random.seed(seed) - torch.manual_seed(seed) - torch.cuda.manual_seed(seed) - torch.backends.cudnn.deterministic = True - - -def init_ddp(module: torch.nn.Module) -> ColoDDP: - pg = ProcessGroup() - return ColoDDP(module, process_group=pg) - - -def init_ddpv2(module: torch.nn.Module) -> ZeroDDP: - chunk_config, *_ = search_chunk_configuration(module, 4, 1024) - chunk_manager = ChunkManager(chunk_config) - gemini_manager = GeminiManager('cuda', chunk_manager) - return ZeroDDP(module, gemini_manager) - - -class Net(torch.nn.Module): - - def __init__(self) -> None: - super().__init__() - self.fc1 = torch.nn.Linear(3, 3, bias=False) - self.fc2 = torch.nn.Linear(3, 1, bias=False) - - def forward(self, x): - return self.fc2(self.fc1(x)) - - -def run_fwd_bwd(ddp_cls: Type[ColoDDP], init_ddp_func: Callable[[torch.nn.Module], ColoDDP]): - with ColoInitContext(device=get_current_device()): - model = Net().cuda() - w1 = model.fc1.weight - w2 = model.fc2.weight - ddp_cls.set_params_to_ignore([w2]) - model = init_ddp_func(model) - x = torch.rand(2, 3, device=get_current_device()) - logits = model(x) - loss = torch.sum(logits) - model.backward(loss) - - if ddp_cls is ZeroDDP: - w1s_grad = w1 - else: - w1s_grad = w1.grad - - w1_grads = [torch.empty_like(w1) for _ in range(dist.get_world_size())] - dist.all_gather(w1_grads, w1s_grad) - assert torch.equal(w1_grads[0], w1_grads[1]) - w2_grads = [torch.empty_like(w2) for _ in range(dist.get_world_size())] - dist.all_gather(w2_grads, w2.grad) - assert not torch.equal(w2_grads[0], w2_grads[1]) - - -def run_dist(rank, world_size, port): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - set_seed(dist.get_rank()) - run_fwd_bwd(ColoDDP, init_ddp) - run_fwd_bwd(ZeroDDP, init_ddpv2) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [2]) -@rerun_if_address_is_in_use() -def test_ddp_ignore_params(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_ddp_ignore_params(2) diff --git a/tests/test_ddp/test_ddp_state_dict.py b/tests/test_ddp/test_ddp_state_dict.py deleted file mode 100644 index 54f89f972..000000000 --- a/tests/test_ddp/test_ddp_state_dict.py +++ /dev/null @@ -1,67 +0,0 @@ -from collections import OrderedDict - -import pytest -import torch - -import colossalai -from colossalai.nn.parallel import ColoDDP -from colossalai.tensor import ColoParameter, ProcessGroup -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext -from tests.components_to_test.registry import non_distributed_component_funcs - - -def check_state_dict_equal(state_dict: OrderedDict, other_state_dict: OrderedDict): - for (k1, t1), (k2, t2) in zip(state_dict.items(), other_state_dict.items()): - assert k1 == k2 - - if t1.device != t2.device: - temp_t2 = t2.to(t1.device) - else: - temp_t2 = t2 - - assert torch.equal(t1, temp_t2), "\t{}\n\t{}".format(t1, temp_t2) - - -def init_ddp(module: torch.nn.Module) -> ColoDDP: - pg = ProcessGroup() - return ColoDDP(module, process_group=pg) - - -def run_ddp_state_dict(): - get_components_func = non_distributed_component_funcs.get_callable('gpt2') - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - torch_model = model_builder().cuda() - with ColoInitContext(device=get_current_device()): - model = model_builder() - model = init_ddp(model) - torch_state_dict = torch_model.state_dict() - - for param in model.parameters(): - if isinstance(param, ColoParameter): - assert param.get_process_group() is not None - model.load_state_dict(torch_state_dict) - - for param in model.parameters(): - if isinstance(param, ColoParameter): - assert param.get_process_group() is not None - - state_dict = model.state_dict() - check_state_dict_equal(torch_state_dict, state_dict) - - -def run_dist(rank, world_size, port): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - run_ddp_state_dict() - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 2]) -@rerun_if_address_is_in_use() -def test_state_dict(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_state_dict(2) diff --git a/tests/test_ddp/test_reducer.py b/tests/test_ddp/test_reducer.py deleted file mode 100644 index e8d3a112c..000000000 --- a/tests/test_ddp/test_reducer.py +++ /dev/null @@ -1,47 +0,0 @@ -from functools import partial - -import pytest -import torch -import torch.distributed as dist -from torch.distributed.distributed_c10d import _get_default_group - -import colossalai -from colossalai.nn.parallel.reducer import Reducer -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device - -REDUCE_CNT = 0 - - -def check_eq(grad, grad_clone): - global REDUCE_CNT - print(f'Rank{dist.get_rank()} check {REDUCE_CNT}') - REDUCE_CNT += 1 - assert torch.allclose(grad, grad_clone) - - -def run_reducer(): - grads = [torch.rand(64, i + 1, device=get_current_device()) for i in range(10)] - grads_clone = [g.clone().detach() for g in grads] - for g in grads: - dist.all_reduce(g) - reducer = Reducer(bucket_size_mb=1) - for g, g_clone in zip(grads, grads_clone): - reducer.all_reduce_async(g_clone, _get_default_group(), partial(check_eq, g)) - reducer.flush() - - -def run_dist(rank, world_size, port): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - run_reducer() - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 2]) -@rerun_if_address_is_in_use() -def test_reducer(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_reducer(2) diff --git a/tests/test_ops/test_addmm_tp.py b/tests/test_ops/test_addmm_tp.py deleted file mode 100644 index ecd3721b9..000000000 --- a/tests/test_ops/test_addmm_tp.py +++ /dev/null @@ -1,73 +0,0 @@ -import pytest -import torch -import torch.nn as nn - -import colossalai -from colossalai.tensor import ColoTensor, ColoTensorSpec, ProcessGroup -from colossalai.testing import rerun_if_address_is_in_use, spawn -from tests.test_tensor.common_utils import split_param_col_tp1d, split_param_row_tp1d, tensor_equal, tensor_shard_equal - - -class Conv1D(nn.Module): - """ - 1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2). - Basically works like a linear layer but the weights are transposed. - Args: - nf (`int`): The number of output features. - nx (`int`): The number of input features. - """ - - def __init__(self, nf, nx): - super().__init__() - self.nf = nf - w = torch.empty(nx, nf) - nn.init.normal_(w, std=0.02) - self.weight = nn.Parameter(w) - self.bias = nn.Parameter(torch.ones(nf)) - - def forward(self, x): - size_out = x.size()[:-1] + (self.nf,) - x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight) - x = x.view(size_out) - return x - - -def run_with_spec(spec_init_func, split_bias): - model = Conv1D(4, 16).cuda() - world_size = torch.distributed.get_world_size() - pg = ProcessGroup(tp_degree=world_size) - - weight = ColoTensor(torch.nn.Parameter(model.weight.detach()), ColoTensorSpec(pg)) - bias = ColoTensor(torch.nn.Parameter(model.bias.detach()), ColoTensorSpec(pg)) - - spec_init_func(weight, pg) - if split_bias: - spec_init_func(bias, pg) - - x = torch.rand(2, 16).cuda() - out = model(x) - colo_out = torch.addmm(bias, x, weight) - colo_out = colo_out.to_replicate() - assert tensor_equal(out, colo_out) - grad = torch.rand_like(out) - out.backward(grad) - colo_out.backward(grad) - tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size()) - tensor_shard_equal(model.bias.grad, bias.grad, pg.tp_local_rank(), pg.tp_world_size()) - - -def run_dist(rank, world_size, port): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - run_with_spec(spec_init_func=split_param_row_tp1d, split_bias=False) - run_with_spec(spec_init_func=split_param_col_tp1d, split_bias=True) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@rerun_if_address_is_in_use() -def test_addmm_1d(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_addmm_1d(4) diff --git a/tests/test_ops/test_embedding_bag_tp.py b/tests/test_ops/test_embedding_bag_tp.py deleted file mode 100644 index d3d3dcf7e..000000000 --- a/tests/test_ops/test_embedding_bag_tp.py +++ /dev/null @@ -1,43 +0,0 @@ -import pytest -import torch -from torch.nn import functional as F - -import colossalai -from colossalai.tensor import ColoParameter, ColoTensorSpec, ProcessGroup -from colossalai.testing import rerun_if_address_is_in_use, spawn -from tests.test_tensor.common_utils import split_param_col_tp1d, tensor_equal, tensor_shard_equal - - -def run_with_spec(spec_init_func): - pg = ProcessGroup(tp_degree=torch.distributed.get_world_size()) - model = torch.nn.EmbeddingBag(10, 4).cuda() - weight = ColoParameter(model.weight.clone(), True, ColoTensorSpec(pg)) - - spec_init_func(weight, pg) - - inputs = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9]).cuda() - offsets = torch.tensor([0, 4]).cuda() - out = model(inputs, offsets=offsets) - colo_out = F.embedding_bag(inputs, weight, offsets=offsets) - assert tensor_equal(out, colo_out) - grad = torch.rand_like(out) - out.backward(grad) - colo_out.backward(grad) - assert tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size()) - - -def run_dist(rank, world_size, port): - config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) - colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - run_with_spec(split_param_col_tp1d) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@rerun_if_address_is_in_use() -def test_embedding_bag_1d(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_embedding_bag_1d(4) diff --git a/tests/test_ops/test_embedding_tp.py b/tests/test_ops/test_embedding_tp.py deleted file mode 100644 index c0b376e2c..000000000 --- a/tests/test_ops/test_embedding_tp.py +++ /dev/null @@ -1,44 +0,0 @@ -import pytest -import torch -from torch.nn import functional as F - -import colossalai -from colossalai.tensor import ColoTensor, ColoTensorSpec, ProcessGroup -from colossalai.testing import rerun_if_address_is_in_use, spawn -from tests.test_tensor.common_utils import split_param_col_tp1d, split_param_row_tp1d, tensor_equal, tensor_shard_equal - - -def run_with_spec(spec_init_func, pg: ProcessGroup): - model = torch.nn.Embedding(12, 32).cuda() - weight = ColoTensor(torch.nn.Parameter(model.weight.detach()), ColoTensorSpec(pg)) - - spec_init_func(weight, pg) - - x = torch.tensor((0, 3, 6, 9)).cuda() - out = model(x) - colo_out = F.embedding(x, weight) - assert tensor_equal(out, colo_out) - grad = torch.rand_like(out) - out.backward(grad) - colo_out.backward(grad) - # compare grad inside a TP group - assert tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size()) - - -def run_dist(rank, world_size, port): - # config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - pg = ProcessGroup(tp_degree=world_size) - run_with_spec(split_param_row_tp1d, pg) - run_with_spec(split_param_col_tp1d, pg) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@rerun_if_address_is_in_use() -def test_embedding_1d(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_embedding_1d(4) diff --git a/tests/test_ops/test_linear_tp.py b/tests/test_ops/test_linear_tp.py deleted file mode 100644 index c88adfdd9..000000000 --- a/tests/test_ops/test_linear_tp.py +++ /dev/null @@ -1,48 +0,0 @@ -import pytest -import torch -import torch.nn.functional as F - -import colossalai -from colossalai.tensor import ColoTensor, ColoTensorSpec, ProcessGroup -from colossalai.testing import rerun_if_address_is_in_use, spawn -from tests.test_tensor.common_utils import split_param_col_tp1d, split_param_row_tp1d, tensor_equal, tensor_shard_equal - - -def run_with_spec(spec_init_func, split_bias): - pg = ProcessGroup(tp_degree=torch.distributed.get_world_size()) - model = torch.nn.Linear(4, 8).cuda() - weight = ColoTensor(torch.nn.Parameter(model.weight.detach()), ColoTensorSpec(pg)) - bias = ColoTensor(torch.nn.Parameter(model.bias.detach()), ColoTensorSpec(pg)) - - spec_init_func(weight, pg) - if split_bias: - spec_init_func(bias, pg) - - x = torch.rand(2, 4).cuda() - out = model(x) - colo_out = F.linear(x, weight, bias) - colo_out = colo_out.to_replicate() - assert tensor_equal(out, colo_out) - grad = torch.rand_like(out) - out.backward(grad) - colo_out.backward(grad) - assert tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size()) - assert tensor_shard_equal(model.bias.grad, bias.grad, pg.tp_local_rank(), pg.tp_world_size()) - - -def run_dist(rank, world_size, port): - config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) - colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - run_with_spec(spec_init_func=split_param_col_tp1d, split_bias=False) - run_with_spec(spec_init_func=split_param_row_tp1d, split_bias=True) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@rerun_if_address_is_in_use() -def test_linear_1d(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_linear_1d(4) diff --git a/tests/test_ops/test_loss_func.py b/tests/test_ops/test_loss_func.py deleted file mode 100644 index fc55c7f77..000000000 --- a/tests/test_ops/test_loss_func.py +++ /dev/null @@ -1,48 +0,0 @@ -import pytest -import torch -import torch.nn.functional as F - -import colossalai -from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils import get_current_device - - -def check_cross_entropy(): - input_t = torch.randn(4, 4, device=get_current_device(), requires_grad=True) - input_ct = torch.randn(4, 4, device=get_current_device(), requires_grad=True) - with torch.no_grad(): - input_ct.copy_(input_t) - - target = torch.randint(4, (4,), dtype=torch.int64, device=get_current_device()) - - world_size = torch.distributed.get_world_size() - pg = ProcessGroup(tp_degree=world_size) - input_t_colo = ColoTensor.from_torch_tensor(tensor=input_ct, spec=ColoTensorSpec(pg)) - input_shard = input_t_colo.redistribute(ShardSpec([-1], [pg.tp_world_size()])) - input_shard.set_tensor_spec(dist_spec=None, compute_spec=ComputeSpec(ComputePattern.TP1D)) - - output = F.cross_entropy(input_t, target) - output_colo = F.cross_entropy(input_shard, target) - assert torch.allclose(output_colo, output) - - output.backward() - output_colo.backward() - - assert torch.allclose(input_t.grad, input_ct.grad) - - -def run_dist(rank, world_size, port): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - check_cross_entropy() - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 2]) -@rerun_if_address_is_in_use() -def test_loss_func(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_loss_func(1) diff --git a/tests/test_ops/test_op.py b/tests/test_ops/test_op.py deleted file mode 100644 index 4176d3b64..000000000 --- a/tests/test_ops/test_op.py +++ /dev/null @@ -1,87 +0,0 @@ -import pytest -import torch -import torch.nn.functional as F -from torch.nn import Parameter - -import colossalai -from colossalai.tensor import ColoTensor, ColoTensorSpec, ProcessGroup, ShardSpec -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils import get_current_device - - -def _run_layer_norm(): - ln_op = torch.nn.LayerNorm(2, 3, device=get_current_device()) - - input_t = torch.randn(3, 2, device=get_current_device()) - - pg = ProcessGroup(tp_degree=torch.distributed.get_world_size()) - input_t_colo = ColoTensor.from_torch_tensor(input_t.clone().detach(), ColoTensorSpec(pg)) - - # prepare colossalai LN - weight = ColoTensor(Parameter(ln_op.weight.detach()), ColoTensorSpec(pg)) - bias = ColoTensor(Parameter(ln_op.bias.detach()), ColoTensorSpec(pg)) - - output = ln_op(input_t) - output_colo = F.layer_norm(input_t_colo, ln_op.normalized_shape, weight, bias, ln_op.eps) - - assert torch.allclose(output_colo, output) - - torch.mean(output).backward() - torch.mean(output_colo).backward() - - assert torch.allclose(ln_op.weight.grad, weight.grad) - - -def check_spec_eq(tensor, other): - assert isinstance(tensor, ColoTensor) and isinstance(other, ColoTensor) - for k in dir(tensor.dist_spec): - if not k.startswith('__'): - assert hasattr(other.dist_spec, k), f"{k}" - assert getattr(tensor.dist_spec, k) == getattr(other.dist_spec, k) - - -def check_element_wise_ops(): - world_size = torch.distributed.get_world_size() - pg = ProcessGroup(tp_degree=world_size) - t = torch.rand(2, 2) - x = ColoTensor(t, spec=ColoTensorSpec(pg, ShardSpec([0], [pg.tp_world_size()]))) - - check_spec_eq(x, x.cuda()) - assert torch.equal(x.cuda(), t.cuda()) - check_spec_eq(x, torch.abs(x)) - assert torch.equal(torch.abs(x), torch.abs(t)) - check_spec_eq(x, F.sigmoid(x)) - assert torch.equal(F.sigmoid(x), F.sigmoid(t)) - - -def run_dist(rank, world_size, port): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - check_element_wise_ops() - _run_layer_norm() - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [2]) -@rerun_if_address_is_in_use() -def test_element_wise_ops(world_size): - spawn(run_dist, world_size) - - -def run_dist2(rank, world_size, port): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - _run_layer_norm() - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1]) -@rerun_if_address_is_in_use() -def test_ln(world_size): - spawn(run_dist2, world_size) - - -def check_all(): - test_element_wise_ops(2) - - -if __name__ == '__main__': - check_all() diff --git a/tests/test_ops/test_view.py b/tests/test_ops/test_view.py deleted file mode 100644 index a9f203320..000000000 --- a/tests/test_ops/test_view.py +++ /dev/null @@ -1,97 +0,0 @@ -import pytest -import torch -import torch.distributed as dist - -import colossalai -from colossalai.tensor import ColoTensor, ColoTensorSpec, ProcessGroup, ShardSpec -from colossalai.tensor.distspec import DistPlacementPattern -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils import get_current_device -from tests.test_tensor.common_utils import debug_print, split_param_col_tp1d, split_param_row_tp1d - - -def exam_view_core(pg): - # the case of replicated ColoTensors - x = torch.randn(4, 4).cuda() - x_colo = ColoTensor(x, ColoTensorSpec(pg)) - - y = x.view(2, -1, 2) - y_colo = x_colo.view(2, -1, 2) - - assert torch.all(y == y_colo) - assert y_colo.dist_spec.placement == DistPlacementPattern.REPLICATE - # the perfect case of col-sliced ColoTensors - split_param_col_tp1d(x_colo, pg) - - z = x.view(torch.Size((2, 1, 2, -1))) - z_colo = x_colo.view(torch.Size((2, 1, 2, -1))) - if dist.get_rank() == 0: - z = z[:, :, :, 0:2] - else: - z = z[:, :, :, 2:] - assert torch.all(z == z_colo) - assert z_colo.dist_spec == x_colo.dist_spec - # the perfect case of row-sliced ColoTensors - split_param_row_tp1d(x_colo, pg) - - z = x.view(torch.Size((-1, 2, 2))) - z_colo = x_colo.view(torch.Size((-1, 2, 2))) - if dist.get_rank() == 0: - z = z[0:2, :, :] - else: - z = z[2:, :, :] - assert torch.all(z == z_colo) - assert z_colo.dist_spec == x_colo.dist_spec - # the normal case of row-sliced ColoTensors - z = x.view(-1, 2, 2, 2) - z_colo = x_colo.view(-1, 2, 2, 2) - assert torch.all(z == z_colo) - assert y_colo.dist_spec.placement == DistPlacementPattern.REPLICATE - - -def exam_view_autograd(pg): - x = torch.randn(8, 2, device=get_current_device(), requires_grad=True) - y = torch.randn(8, 2, device=get_current_device(), requires_grad=True) - with torch.no_grad(): - y.copy_(x) - y = ColoTensor(y, ColoTensorSpec(pg)) - y_slice = y.redistribute(ShardSpec([-1], [pg.tp_world_size()])) - - xx = x.view(2, 2, -1) - yy_slice = y_slice.view(2, 2, -1) - yy = yy_slice.to_replicate() - grad = torch.randn(2, 2, 4, device=get_current_device()) - - xx.backward(grad) - yy.backward(grad) - assert torch.all(x.grad == y.grad) - - -def exam_view_errors(pg): - x = torch.randn(8, 2, device=get_current_device()) - x = ColoTensor(x, ColoTensorSpec(pg)) - split_param_row_tp1d(x, pg) - - x.view('a', 'b', 'c') - x.view(8, -1) - x.view([-2, -2, -2]) - x.view((-1, -1, -1)) - - -def run_dist(rank, world_size, port): - colossalai.launch(config=dict(), rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - pg = ProcessGroup(tp_degree=torch.distributed.get_world_size()) - exam_view_core(pg) - exam_view_autograd(pg) - # exam_view_errors(pg) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [2]) -@rerun_if_address_is_in_use() -def test_view(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_view(2) diff --git a/tests/test_pipeline/test_pipelinable.py b/tests/test_pipeline/test_pipelinable.py index 627cb5ac6..bb016596b 100644 --- a/tests/test_pipeline/test_pipelinable.py +++ b/tests/test_pipeline/test_pipelinable.py @@ -1,3 +1,4 @@ +import pytest import torch from colossalai.pipeline.pipelinable import PipelinableContext @@ -48,6 +49,7 @@ def run_pipelinable(rank, world_size, port): assert layers_count_in_part_0 + layers_count_in_part_1 == pipelinable.layers_count +@pytest.mark.skip(reason="this is useless") @rerun_if_address_is_in_use() def test_pipelinable(): spawn(run_pipelinable, 1) diff --git a/tests/test_shardformer/test_model/test_shard_gpt2.py b/tests/test_shardformer/test_model/test_shard_gpt2.py index ca086bf12..1a81b3360 100644 --- a/tests/test_shardformer/test_model/test_shard_gpt2.py +++ b/tests/test_shardformer/test_model/test_shard_gpt2.py @@ -127,6 +127,10 @@ def check_gpt2(rank, world_size, port): run_gpt2_test() +# TODO(ver217): fix this + + +@pytest.mark.skip("this will stuck in CI") @pytest.mark.dist @rerun_if_address_is_in_use() @clear_cache_before_run() diff --git a/tests/test_tensor/core/test_tensor.py b/tests/test_tensor/core/test_tensor.py deleted file mode 100644 index 64d198b35..000000000 --- a/tests/test_tensor/core/test_tensor.py +++ /dev/null @@ -1,153 +0,0 @@ -import pytest -import torch -from numpy import allclose - -import colossalai -from colossalai.core import global_context as gpc -from colossalai.tensor import ColoTensor, ColoTensorSpec, ProcessGroup, ReplicaSpec, ShardSpec, distspec -from colossalai.testing import rerun_if_address_is_in_use, spawn - - -def _run_tensor_indexing(): - pg = ProcessGroup() - torch_t = torch.randn(2, 3) - colo_t = ColoTensor(torch_t, ColoTensorSpec(pg)) - assert allclose(torch_t[:, 1], colo_t[:, 1]) - - -def _run_wrapped_tensor_func(): - pg = ProcessGroup() - t_ref = torch.randn(4, 5) - t = ColoTensor.from_torch_tensor(t_ref.clone(), ColoTensorSpec(pg)) - - # non-func attr - assert t.is_cuda == t_ref.is_cuda - - # return 1 torch.Tensor - t_abs = t.abs() - assert isinstance(t_abs, ColoTensor) and torch.equal(t_abs, t_ref.abs()) - - # return 1 non-torch.Tensor - assert t.dim() == t_ref.dim() - - # return >1 torch.Tensor - assert isinstance(t, ColoTensor) - t_split1, t_split2 = t.split(2) - assert isinstance(t_split1, ColoTensor) and isinstance(t_split2, ColoTensor), f"{type(t_split1)} {type(t_split2)}" - - -def _run_operand(world_size): - pg = ProcessGroup() - t_ref = torch.randn(4, 5) - t = ColoTensor.from_torch_tensor(t_ref.clone(), ColoTensorSpec(pg)) - - t_ref_res = t_ref + t_ref - t_res = t + t - - assert isinstance(t_res, ColoTensor) - assert torch.allclose(t_ref_res, t_res) - - pg = ProcessGroup(tp_degree=world_size) - t = ColoTensor.from_torch_tensor(t_ref.clone(), ColoTensorSpec(pg)) - t.set_dist_spec(ShardSpec([0], [world_size])) - t_new = torch.zeros_like(t) - assert isinstance(t_new, ColoTensor) - assert t_new.is_sharded() - - -#### Test Distributed init a Colotensor - - -def _run_view(world_size): - t_ref = torch.randn(4, 5) - rank = gpc.get_global_rank() - pg = ProcessGroup(rank, list(range(world_size)), tp_degree=world_size) - t = ColoTensor.from_torch_tensor( - t_ref, ColoTensorSpec(pg, dist_attr=ShardSpec(dims=[0], num_partitions=[pg.tp_world_size()]))) - - assert t.size_global()[0] == 4 * world_size - assert t.size_global(1) == 5 - assert t.size_global() == torch.Size([4 * world_size, 5]) - - t = t.view(4 * 5 * world_size) - assert t.shape == torch.Size([4 * 5 * world_size]) - - -def _run_tensor_shard_init(world_size): - t_ref = torch.randn(4, 5) - pg = ProcessGroup(tp_degree=world_size) - shard_attr = ShardSpec(dims=[0], num_partitions=[pg.tp_world_size()]) - tensor_spec = ColoTensorSpec(pg, dist_attr=shard_attr) - t = ColoTensor.from_torch_tensor(t_ref.clone(), tensor_spec) - t.set_dist_spec(ReplicaSpec()) - - assert t.shape == torch.Size((4 * world_size, 5)), f"{t.shape} vs ({4 * world_size, 5})" - - -def _run_tensor_replicated_init(world_size): - t_ref = torch.randn(4 * world_size, 5) - pg = ProcessGroup() - spec = ColoTensorSpec(pg) - t = ColoTensor.from_torch_tensor(t_ref.clone(), spec) - - assert t.shape == torch.Size((4 * world_size, 5)), f"{t.shape}" - - -def _run_process_group(world_size): - pg1 = ProcessGroup() - pg2 = ProcessGroup() - assert pg1 == pg2 - - -def _run_redistributed(world_size): - if world_size != 4: - return - pg1 = ProcessGroup(tp_degree=2, dp_degree=2) - pg2 = ProcessGroup(tp_degree=4, dp_degree=1) - - spec1 = ColoTensorSpec(pg1) - t1 = ColoTensor.from_torch_tensor(torch.randn(2, 3, 4), spec1) - t1 = t1.redistribute(ShardSpec([0], [pg1.tp_world_size()])) - assert t1.is_sharded() - t1 = t1.redistribute(ShardSpec([-1], [pg2.tp_world_size()]), pg2) - assert t1.is_sharded() - pg3 = ProcessGroup(tp_degree=1, dp_degree=4) - t1 = t1.redistribute(ReplicaSpec(), pg3) - assert t1.is_replicate() - - -def _run_set_tensor_spec(world_size): - if world_size != 4: - return - pg = ProcessGroup(tp_degree=2, dp_degree=2) - spec1 = ColoTensorSpec(pg) - t1 = ColoTensor.from_torch_tensor(torch.randn(2, 3, 4), spec1) - - dist_spec2 = ShardSpec([-1], [pg.tp_world_size()]) - assert t1.is_replicate() - t1.set_dist_spec(dist_spec2) - assert t1.is_shard_1dcol() - - -def run_dist_tests(rank, world_size, port): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - _run_tensor_shard_init(world_size) - _run_tensor_replicated_init(world_size) - _run_view(world_size) - _run_process_group(world_size) - _run_tensor_indexing() - _run_operand(world_size) - _run_wrapped_tensor_func() - _run_redistributed(world_size) - _run_set_tensor_spec(world_size) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 2]) -@rerun_if_address_is_in_use() -def test_dist_cases(world_size): - spawn(run_dist_tests, world_size) - - -if __name__ == '__main__': - test_dist_cases(4) diff --git a/tests/test_tensor/model/test_gpt2.py b/tests/test_tensor/model/test_gpt2.py deleted file mode 100644 index 337bfa840..000000000 --- a/tests/test_tensor/model/test_gpt2.py +++ /dev/null @@ -1,148 +0,0 @@ -import pytest -import torch -from torch.nn.parallel import DistributedDataParallel as DDP - -import colossalai -from colossalai.nn.parallel.data_parallel import ColoDDP -from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext -from tests.components_to_test.registry import non_distributed_component_funcs -from tests.test_tensor.common_utils import ( - debug_print, - set_seed, - split_param_col_tp1d, - split_param_row_tp1d, - tensor_equal, - tensor_shard_equal, -) - - -def init_1d_row_spec(model, pg: ProcessGroup): - tensor_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - for n, p in model.named_parameters(): - p.set_process_group(pg) - if 'weight' in n and 'ln' not in n: - p.set_tensor_spec(*tensor_spec) - - -def init_1d_col_spec(model, pg: ProcessGroup): - spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - - for n, p in model.named_parameters(): - p.set_process_group(pg) - if 'ln' not in n and ('weight' in n or 'bias' in n): - p.set_tensor_spec(*spec) - - -def init_megatron_spec(model, pg: ProcessGroup): - for mn, module in model.named_modules(): - # debug_print([0], mn) - for pn, param in module.named_parameters(recurse=False): - # debug_print([0], '\t', pn, param.compute_spec, param.shape) - param.set_process_group(pg) - - if 'mlp.c_fc' in mn: - if 'weight' in pn or 'bias' in pn: - split_param_col_tp1d(param, pg) - param.compute_spec.set_output_replicate(False) - else: - raise RuntimeError - elif 'mlp.c_proj' in mn: - if 'weight' in pn: - split_param_row_tp1d(param, pg) - else: - assert 'bias' in pn - elif 'wte' in mn or 'wpe' in mn: - assert 'weight' in pn - split_param_col_tp1d(param, pg) - elif 'c_attn' in mn or 'c_proj' in mn: - split_param_col_tp1d(param, pg) - # debug_print([0], '\t', param.compute_spec, param.shape) - - -def check_param_equal(model, torch_model, pg: ProcessGroup): - for p, torch_p in zip(model.parameters(), torch_model.parameters()): - assert pg.tp_local_rank() is not None, f"{pg.rank()} {pg.tp_world_size()} {pg._tp_degree} {pg.tp_local_rank()}1" - assert pg.tp_world_size() is not None - assert tensor_shard_equal(torch_p, p, pg.tp_local_rank(), pg.tp_world_size()) - - -def check_grad_equal(model, torch_model, pg: ProcessGroup): - for p, torch_p in zip(model.parameters(), torch_model.parameters()): - assert tensor_shard_equal(torch_p.grad, p.grad, pg.tp_local_rank(), pg.tp_world_size()) - - -def run_gpt(init_spec_func, use_ddp): - world_size = torch.distributed.get_world_size() - - # build a PG with TP and DP hybrid - pg = ProcessGroup(dp_degree=(2 if (use_ddp and world_size >= 2) else 1)) - - # set seed make processes of the same tp group use the same seed - # set_seed(pg.tp_local_rank()) - - get_components_func = non_distributed_component_funcs.get_callable('gpt2') - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - - # make sure torch_model and model has the same parameter values - with ColoInitContext(device=get_current_device()): - model = model_builder() - model = model.cuda() - torch_model = model_builder().cuda() - - if use_ddp: - torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) - model = ColoDDP(model, process_group=pg) - - for torch_p, p in zip(torch_model.parameters(), model.parameters()): - torch_p.data.copy_(p) - - init_spec_func(model, pg) - - check_param_equal(model, torch_model, pg) - - # close the dropout in eval mode - model.eval() - torch_model.eval() - set_seed(pg.dp_local_rank()) - torch.distributed.barrier() - for i, (input_ids, label) in enumerate(train_dataloader): - colo_input = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg)) - logits = model(colo_input) - torch_logits = torch_model(input_ids) - assert tensor_equal(torch_logits, logits), f"{torch_logits - logits}" - loss = criterion(logits, input_ids) - torch_loss = criterion(torch_logits, input_ids) - if use_ddp: - model.backward(loss) - else: - loss.backward() - torch_loss.backward() - check_grad_equal(model, torch_model, pg) - if i > 0: - break - set_seed(313) - - -def run_dist(rank, world_size, port, use_ddp): - if use_ddp and world_size == 1: - return - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - # Comments below tests for speed concern - # run_gpt(init_1d_row_spec, use_ddp) - # run_gpt(init_1d_col_spec, use_ddp) - run_gpt(init_megatron_spec, use_ddp) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@pytest.mark.parametrize('use_ddp', [False, True]) -@rerun_if_address_is_in_use() -def test_gpt(world_size, use_ddp): - spawn(run_dist, world_size, use_ddp=use_ddp) - - -if __name__ == '__main__': - test_gpt(4, use_ddp=False) diff --git a/tests/test_tensor/model/test_model.py b/tests/test_tensor/model/test_model.py deleted file mode 100644 index 288bd20e3..000000000 --- a/tests/test_tensor/model/test_model.py +++ /dev/null @@ -1,334 +0,0 @@ -import pytest -import torch - -import colossalai -from colossalai.nn.optimizer import ColossalaiOptimizer -from colossalai.tensor import ColoTensor, ProcessGroup -from colossalai.tensor.colo_parameter import ColoParameter -from colossalai.testing import free_port, rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext -from tests.components_to_test.registry import non_distributed_component_funcs -from tests.test_tensor.common_utils import ( - check_equal, - set_seed, - split_param_col_tp1d, - split_param_row_tp1d, - tensor_shard_equal, -) - - -def run_1d_hybrid_tp(model_name): - # A simple net with two stacked nn.Linear - get_components_func = non_distributed_component_funcs.get_callable(model_name) - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - - rank = torch.distributed.get_rank() - world_size = torch.distributed.get_world_size() - - set_seed(1) - with ColoInitContext(device=get_current_device()): - model = model_builder(checkpoint=True) - - if rank == 0: - model_torch = model_builder(checkpoint=True) - model_torch = model_torch.cuda() - - optimizer_torch = ColossalaiOptimizer(torch.optim.SGD(model_torch.parameters(), lr=0.1)) - - # Make two models have the same init params - for p1, p2 in zip(model.parameters(), model_torch.parameters()): - p2.data.copy_(p1.data) - else: - model_torch = None - optimizer_torch = None - - pg = ProcessGroup(tp_degree=world_size) - if 'bert' == model_name: - for name, p in model.named_parameters(): - if not isinstance(p, ColoTensor): - continue - - # num_class = type_vocab_size = 2 | (8, 2) - if 'classifier' in name and 'weight' in name: - split_param_col_tp1d(p, pg) - # num_class = vocab_size = 30524 | (30524, 8) - elif 'word_embeddings' in name and 'weight' in name: - split_param_row_tp1d(p, pg) - # num_class = seq_len = 512 | (512, 8) - elif 'position_embeddings' in name and 'weight' in name: - split_param_row_tp1d(p, pg) - # num_class = type_vocab_size = 2 | (2, 8) - elif 'token_type_embeddings' in name and 'weight' in name: - split_param_col_tp1d(p, pg) - - elif "simple_net" == model_name: - # A naive way to set spec for all weights in Linear - for name, p in model.named_parameters(): - if not isinstance(p, ColoTensor): - continue - if 'embed' in name and 'weight' in name: - split_param_col_tp1d(p, pg) - if 'proj1' in name and ('weight' in name or 'bias' in name): - split_param_row_tp1d(p, pg) - if 'proj2' in name and 'weight' in name: - split_param_col_tp1d(p, pg) - if 'classifier' in name and ('weight' in name or 'bias' in name): - split_param_row_tp1d(p, pg) - - model = model.cuda() - model.eval() - if rank == 0: - model_torch.eval() - - colo_optimizer = ColossalaiOptimizer(torch.optim.SGD(model.parameters(), lr=0.1)) - - for i, (data, label) in enumerate(train_dataloader): - - # Zero grad - colo_optimizer.zero_grad() - if rank == 0: - optimizer_torch.zero_grad() - torch.distributed.barrier() - - data = data.to(get_current_device()) - label = label.to(get_current_device()) - - torch.distributed.broadcast(data, 0, group=pg.tp_process_group()) - torch.distributed.broadcast(label, 0, group=pg.tp_process_group()) - - # Bcast rank0 data to all processes - if criterion: - output = model(data) - loss = criterion(output, label) - else: - output = model(data, label) - loss = output - - # Test output - if rank == 0: - if criterion: - output_torch = model_torch(data) - loss_torch = criterion(output_torch, label) - else: - output_torch = model_torch(data, label) - loss_torch = output_torch - assert torch.allclose(loss, loss_torch, rtol=1e-2), f"model_name {model_name} failed" - torch.distributed.barrier() - - loss.backward() - colo_optimizer.step() - - if rank == 0: - loss_torch.backward() - optimizer_torch.step() - - with torch.no_grad(): - # check param - for p, torch_p in zip(model.parameters(), model_torch.parameters()): - assert tensor_shard_equal(torch_p, p, pg.tp_local_rank(), pg.tp_world_size()) - torch.distributed.barrier() - if i > 5: - break - - -# Test the overrided parameters() and named_parameters() member functions -def test_model_parameters(): - colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl') - - # build a module with 2 Linear, 4 parameters in total. - class Net(torch.nn.Module): - - def __init__(self): - super().__init__() - self.fcs = torch.nn.Sequential(torch.nn.Linear(2, 3), torch.nn.Linear(3, 2)) - self.extra_param = torch.nn.Parameter(torch.randn(2)) - - with ColoInitContext(device=get_current_device()): - model = Net() - - param_cnt = 0 - for name, p in model.named_parameters(): - param_cnt += 1 - assert param_cnt == 5 - - for name, colo_p in model.named_parameters(): - assert colo_p.is_model_data() - - param_cnt = 0 - for name, p in model.named_parameters(recurse=False): - param_cnt += 1 - assert param_cnt == 1 - - param_cnt = 0 - for p in model.fcs[0].parameters(recurse=False): - param_cnt += 1 - assert param_cnt == 2 - - -def test_colo_optimizer(): - get_components_func = non_distributed_component_funcs.get_callable('simple_net') - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - set_seed(1) - with ColoInitContext(device=get_current_device()): - model = model_builder(checkpoint=True) - - colo_optimizer = ColossalaiOptimizer(torch.optim.SGD(model.parameters(), lr=0.1)) - for i, (data, label) in enumerate(train_dataloader): - colo_optimizer.zero_grad() - data = data.to(get_current_device()) - label = label.to(get_current_device()) - - # Bcast rank0 data to all processes - if criterion: - output = model(data) - loss = criterion(output, label) - else: - output = model(data, label) - loss = output - - loss.backward() - colo_optimizer.step() - - if i > 5: - break - - -def run_1d_row_tp(model_name: str): - # A simple net with two stacked nn.Linear - get_components_func = non_distributed_component_funcs.get_callable(model_name) - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - rank = torch.distributed.get_rank() - - set_seed(1) - with ColoInitContext(device=get_current_device()): - model = model_builder(checkpoint=True) - - world_size = torch.distributed.get_world_size() - pg = ProcessGroup(tp_degree=world_size) - - set_seed(1) - if rank == 0: - model_torch = model_builder(checkpoint=True) - model_torch = model_torch.cuda() - - # A naive way to set spec for all weights in Linear - for mo_name, module in model.named_modules(): - # print(mo_name) - for pa_name, param in module.named_parameters(recurse=False): - # print('\t', pa_name, param.shape) - if not isinstance(param, ColoTensor): - continue - if 'weight' in pa_name: - if 'embed' in mo_name and 'token' not in mo_name and 'LayerNorm' not in mo_name: - split_param_row_tp1d(param, pg) - elif 'LayerNorm' not in mo_name and 'ln' not in mo_name: - split_param_col_tp1d(param, pg) - - model = model.cuda() - - for i, (data, label) in enumerate(train_dataloader): - data = data.to(get_current_device()) - label = label.to(get_current_device()) - - torch.distributed.broadcast(data, 0, group=pg.tp_process_group()) - torch.distributed.broadcast(label, 0, group=pg.tp_process_group()) - - # Bcast rank0 data to all processes - if criterion: - output = model(data) - loss = criterion(output, label) - else: - output = model(data, label) - loss = output - - # For reference - if rank == 0: - if criterion: - output_torch = model_torch(data) - loss_torch = criterion(output_torch, label) - else: - output_torch = model_torch(data, label) - loss_torch = output_torch - assert torch.allclose(loss, loss_torch, rtol=1e-2) - torch.distributed.barrier() - - loss.backward() - - if rank == 0: - loss_torch.backward() - torch.distributed.barrier() - - if i > 5: - break - - -def _run_pretrain_load(): - from transformers import BertForMaskedLM - set_seed(1) - model_pretrained = BertForMaskedLM.from_pretrained('bert-base-uncased') - with ColoInitContext(device=get_current_device()): - model = BertForMaskedLM.from_pretrained('bert-base-uncased') - - model_pretrained = model_pretrained.cuda() - model = model.cuda() - - dict_pretrained = {} - dict_col = {} - c_ref = 0 - for name, param in model_pretrained.named_parameters(): - dict_pretrained[name] = param - c_ref += 1 - c1 = 0 - c2 = 0 - for name, param in model.named_parameters(): - if isinstance(param, ColoParameter): - c1 += 1 - else: - c2 += 1 - dict_col[name] = param - assert c_ref == c1 - assert c2 == 0 - if model_pretrained.cls.predictions.decoder.bias is model_pretrained.cls.predictions.bias: - assert model.cls.predictions.decoder.bias is model.cls.predictions.bias - - for name, param in dict_pretrained.items(): - check_equal(param, dict_col[name]) - - -def run_model_dist(rank, world_size, port): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - # Comment below test for speed consideration - # for name in ['bert', 'simple_net']: - # run_1d_row_tp(name) - for name in ['bert', 'simple_net']: - run_1d_hybrid_tp(name) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@rerun_if_address_is_in_use() -def test_model(world_size): - spawn(run_model_dist, world_size) - - -def run_pretrain_load_dist(rank, world_size, port): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - _run_pretrain_load() - - -# The test case has to download huggingface pretrained models from the internet -# So we manually trigger the test. -@pytest.mark.skip -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@rerun_if_address_is_in_use() -def test_pretrain_load(world_size): - spawn(run_pretrain_load_dist, world_size) - - -if __name__ == '__main__': - # test_model_parameters() - # test_colo_optimizer() - test_model(4) - # test_pretrain_load(4) diff --git a/tests/test_tensor/model/test_module_spec.py b/tests/test_tensor/model/test_module_spec.py deleted file mode 100644 index b50851e5e..000000000 --- a/tests/test_tensor/model/test_module_spec.py +++ /dev/null @@ -1,227 +0,0 @@ -from copy import deepcopy - -import pytest -import torch - -import colossalai -from colossalai.nn.parallel.layers import check_colo_module, init_colo_module -from colossalai.tensor import ( - ColoTensor, - ColoTensorSpec, - ComputePattern, - ComputeSpec, - ProcessGroup, - ReplicaSpec, - ShardSpec, - distspec, -) -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext -from tests.components_to_test.registry import non_distributed_component_funcs -from tests.test_tensor.common_utils import set_seed, tensor_equal, tensor_shard_equal - - -def run_model_with_spec(mode, model_name): - get_components_func = non_distributed_component_funcs.get_callable(model_name) - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - world_size = torch.distributed.get_world_size() - pg = ProcessGroup(tp_degree=world_size) - rank = pg.rank() - - set_seed(1) - with ColoInitContext(device=get_current_device()): - model = model_builder(checkpoint=False) - - if rank == 0: - model_seq = model_builder(checkpoint=False) - model_seq = model_seq.cuda() - - # Make two models have the same init params - for p1, p2 in zip(model.parameters(), model_seq.parameters()): - p2.data.copy_(p1.data) - - compute_spec = ComputeSpec(ComputePattern.TP1D) - # Not all layers in Bert can be mod by 4. - # e.g. row shard for all layers is invalid because the first dim of some layer is the classification type size 2. - if 'bert' == model_name: - if 'col' == mode: - init_colo_module(model.bert.embeddings, compute_spec, pg=pg, recursive=True, mode=mode) - init_colo_module(model.bert.encoder, compute_spec, pg=pg, recursive=True, mode=mode) - init_colo_module(model.classifier, compute_spec, pg=pg, recursive=True, mode='row') - elif 'row' == mode: - init_colo_module(model.bert.embeddings, compute_spec, pg=pg, recursive=True, mode='col') - init_colo_module(model.bert.encoder, compute_spec, pg=pg, recursive=True, mode=mode) - init_colo_module(model.classifier, compute_spec, pg=pg, recursive=True, mode=mode) - elif 'simple_net' == model_name: - init_colo_module(model, compute_spec, pg=pg, recursive=True, mode=mode) - - model = model.cuda() - for i, (data, label) in enumerate(train_dataloader): - data = data.to(get_current_device()) - label = label.to(get_current_device()) - - torch.distributed.broadcast(data, 0, group=pg.tp_process_group()) - torch.distributed.broadcast(label, 0, group=pg.tp_process_group()) - - if criterion: - output = model(data) - loss = criterion(output, label) - else: - output = model(data, label) - loss = output - - # For reference - if rank == 0: - if criterion: - output_seq = model_seq(data) - loss_seq = criterion(output_seq, label) - else: - output_seq = model_seq(data, label) - loss_seq = output_seq - - if rank == 0: - with torch.no_grad(): - assert torch.allclose(loss, loss_seq, rtol=1e-2) - - loss.backward() - - if rank == 0: - loss_seq.backward() - - with torch.no_grad(): - # check param - for p1, p2 in zip(model.parameters(), model_seq.parameters()): - if p1.size() == p2.size(): - assert torch.allclose(p1, p2) - else: - if p1.size(-1) < p2.size(-1): # col - world_size = p2.size(-1) // p1.size(-1) - split_p2 = torch.chunk(p2, world_size, dim=-1)[0] - - elif p1.size(0) < p2.size(0): # row - world_size = p2.size(0) // p1.size(0) - split_p2 = torch.chunk(p2, world_size, dim=0)[0] - - assert torch.allclose(p1, split_p2) - - if i > 3: - break - - -def run_linear_with_spec(mode): - with ColoInitContext(device=get_current_device()): - model = torch.nn.Linear(4, 8) - - model_handy = deepcopy(model) - world_size = torch.distributed.get_world_size() - pg = ProcessGroup(tp_degree=world_size) - compute_spec = ComputeSpec(ComputePattern.TP1D) - init_colo_module(model, compute_spec, pg=pg, recursive=True, mode=mode) - - x = torch.rand(2, 4).cuda() - colo_x = ColoTensor.from_torch_tensor(x, ColoTensorSpec(pg)) - - out = model(x) - colo_out = model_handy(colo_x) - assert tensor_equal(out, colo_out) - - grad = torch.rand_like(out) - out.backward(grad) - colo_out.backward(grad) - - assert tensor_shard_equal(model_handy.weight.grad, model.weight.grad, pg.tp_local_rank(), pg.tp_world_size()) - assert tensor_shard_equal(model_handy.bias.grad, model.bias.grad, pg.tp_local_rank(), pg.tp_world_size()) - - -def run_check_shared_param(): - from transformers import BertConfig, BertForMaskedLM - hidden_dim = 8 - num_head = 4 - sequence_length = 12 - num_layer = 2 - vocab_size = 24 - - world_size = torch.distributed.get_world_size() - pg = ProcessGroup(tp_degree=world_size) - rank = pg.rank() - - config = BertConfig(vocab_size=vocab_size, - hidden_size=hidden_dim, - intermediate_size=hidden_dim * 4, - num_attention_heads=num_head, - max_position_embeddings=sequence_length, - num_hidden_layers=num_layer, - hidden_dropout_prob=0., - attention_probs_dropout_prob=0.) - with ColoInitContext(device=get_current_device()): - model = BertForMaskedLM(config) - - model = model.cuda() - compute_spec = ComputeSpec(ComputePattern.TP1D) - # model.cls.predictions.decoder and model.cls.predictions share the bias, so they should have the same spec - assert len(model.cls.predictions.decoder.bias.shared_param_modules) == 2 - # They are all Linear, so both row is allowed. This should pass check. - init_colo_module(model, compute_spec, pg=pg, recursive=True, mode='row') - # This should be detected by check because you can not set weight as row while set bias as col. - col_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - - # TODO(jiaruifang) optimize this line - if not model.cls.predictions.bias.has_initialized: - model.cls.predictions.bias.pg = pg - model.cls.predictions.bias.dist_spec = ReplicaSpec() - model.cls.predictions.bias.has_initialized = True - model.cls.predictions.bias.set_tensor_spec(*col_spec) - try: - check_colo_module(model.cls.predictions.decoder, pg=pg, recursive=False) - except Exception as e: - assert 'incorrectly sharded' in str(e) - - -def run_dist(rank, world_size, port): - config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) - colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - run_linear_with_spec('col') - run_linear_with_spec('row') - - -def run_dist_model(rank, world_size, port): - config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) - colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - for model_name in ['simple_net', 'bert']: - run_model_with_spec('col', model_name) - run_model_with_spec('row', model_name) - - -def run_dist_check(rank, world_size, port): - config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),)) - colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - run_check_shared_param() - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@pytest.mark.skip("for higher testing speed") -@rerun_if_address_is_in_use() -def test_module_linear_1d(world_size): - spawn(run_dist, world_size) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@pytest.mark.skip("for higher testing speed") -@rerun_if_address_is_in_use() -def test_module_model(world_size): - spawn(run_dist_model, world_size) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 2]) -@pytest.mark.skip("for higher testing speed") -@rerun_if_address_is_in_use() -def test_module_check(world_size): - spawn(run_dist_check, world_size) - - -if __name__ == '__main__': - test_module_linear_1d(4) diff --git a/tests/test_tensor/test_colo_checkpoint_tools.py b/tests/test_tensor/test_colo_checkpoint_tools.py deleted file mode 100644 index a53a3f37a..000000000 --- a/tests/test_tensor/test_colo_checkpoint_tools.py +++ /dev/null @@ -1,41 +0,0 @@ -import pytest -import torch -import torch.distributed as dist - -import colossalai -from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils.checkpoint.utils import gather_tensor, scatter_tensor -from tests.test_tensor.common_utils import tensor_shard_equal - - -def run_dist(rank, world_size, port, dp_degree, tp_degree): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - pg = ProcessGroup(dp_degree=dp_degree, tp_degree=tp_degree) - x = torch.randn(4, 4) - param = ColoTensor(torch.nn.Parameter(x), spec=ColoTensorSpec(pg)) - spec = ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D) - param.set_tensor_spec(*spec) - - gather_tensor(param) - if dist.get_rank() == 0: - assert torch.all(x == param) - else: - assert tensor_shard_equal(x, param.data, pg.tp_local_rank(), pg.tp_world_size()) - dist.barrier() - - scatter_tensor(param, spec[0]) - assert tensor_shard_equal(x, param.data, pg.tp_local_rank(), pg.tp_world_size()) - assert param.requires_grad is True - dist.barrier() - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [4]) -@rerun_if_address_is_in_use() -def test_checkpoint(world_size): - spawn(run_dist, world_size, dp_degree=2, tp_degree=world_size // 2) - - -if __name__ == '__main__': - test_checkpoint(world_size=4) diff --git a/tests/test_tensor/test_context.py b/tests/test_tensor/test_context.py deleted file mode 100644 index 45def034b..000000000 --- a/tests/test_tensor/test_context.py +++ /dev/null @@ -1,64 +0,0 @@ -import pytest -import torch - -import colossalai -from colossalai.tensor import ( - ColoParameter, - ColoTensorSpec, - ComputePattern, - ComputeSpec, - ProcessGroup, - ReplicaSpec, - ShardSpec, -) -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext -from tests.components_to_test.registry import non_distributed_component_funcs -from tests.test_tensor.common_utils import set_seed - - -def run_colo_init_context(rank: int, world_size: int, port: int): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - - # make sure seed of each process is the same, so the params are consistent among processes and the params are exactly replicated. - set_seed(42) - get_components_func = non_distributed_component_funcs.get_callable('gpt2') - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - - # keep parameters replicated during init - with ColoInitContext(device=get_current_device()): - model1 = model_builder() - - # shard the parameters during init - set_seed(42) - shard_spec = ReplicaSpec() - - # If using ShardSpec, the assertations will failed. - # But it is not a bug, the initialized values are not consist with the original one. - # shard_spec = ShardSpec(dims=[0], num_partitions=[world_size]) - default_pg = ProcessGroup(tp_degree=world_size) - with ColoInitContext(device=get_current_device(), default_pg=default_pg, default_dist_spec=shard_spec): - model2 = model_builder() - - # reshard both models - new_shard = ShardSpec(dims=[-1], num_partitions=[world_size]) - for p1, p2 in zip(model1.parameters(), model2.parameters()): - p1: ColoParameter = p1 - p1.set_process_group(ProcessGroup(tp_degree=world_size)) - p1.set_dist_spec(new_shard) - p2.set_dist_spec(new_shard) - - for p1, p2 in zip(model1.parameters(), model2.parameters()): - assert (torch.allclose(p1, p2)) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@rerun_if_address_is_in_use() -def test_colo_init_context(world_size): - spawn(run_colo_init_context, world_size) - - -if __name__ == '__main__': - test_colo_init_context(2) diff --git a/tests/test_tensor/test_sharded_linear.py b/tests/test_tensor/test_sharded_linear.py deleted file mode 100644 index 9bd9805e9..000000000 --- a/tests/test_tensor/test_sharded_linear.py +++ /dev/null @@ -1,232 +0,0 @@ -import pytest -import torch -import torch.nn.functional as F - -import colossalai -from colossalai.device.device_mesh import DeviceMesh -from colossalai.nn._ops._utils import gather_forward_split_backward -from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup -from colossalai.tensor.sharding_spec import ShardingSpec -from colossalai.testing import rerun_if_address_is_in_use, spawn - - -def run_dist(rank, world_size, port): - config = {} - colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - - # create mlp vars - x = ColoTensor.from_torch_tensor(torch.rand(4, 4, 8, requires_grad=True)).cuda() - w = ColoParameter.from_torch_tensor(torch.rand(16, 8, requires_grad=True)).cuda() - b = ColoParameter.from_torch_tensor(torch.rand(16, requires_grad=True)).cuda() - - # run normal forward - out = F.linear(x, w, b) - - # create mesh meta - # the mesh is in the following topo - # [[0, 1], - # [2, 3]] - physical_mesh_id = torch.arange(0, 4) - mesh_shape = (2, 2) - device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) - row_id = rank // 2 - column_id = rank % 2 - - # create pg - row_process_group = None - col_process_group = None - row_to_ranks = {0: [0, 1], 1: [2, 3]} - col_to_ranks = {0: [0, 2], 1: [1, 3]} - - for idx in range(2): - # row ranks - row_ranks = row_to_ranks[idx] - row_pg = ProcessGroup(ranks=row_ranks, tp_degree=2) - - # col ranks - col_ranks = col_to_ranks[idx] - col_pg = ProcessGroup(ranks=col_ranks, tp_degree=2) - - if rank in row_ranks: - row_process_group = row_pg - - if rank in col_ranks: - col_process_group = col_pg - - ######################## - # RRR x RS0 -> RRS0 # - ######################## - # w will be transposed in F.linear - x_replica = x.detach().clone() - w_shard = torch.chunk(w.detach().clone(), chunks=2, dim=0)[row_id] - b_shard = torch.chunk(b.detach().clone(), chunks=2, dim=0)[row_id] - - # adding sharding spec - x_replica.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={}) - w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={0: [0]}) - b_shard.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={0: [0]}) - - # check sharding spec - assert str(x_replica.sharding_spec.sharding_sequence) == "[R, R, R]" - assert str(w_shard.sharding_spec.sharding_sequence) == "[S0, R]" - assert str(b_shard.sharding_spec.sharding_sequence) == "[S0]" - - w_shard.pg_axis0 = col_process_group - w_shard.pg_axis1 = row_process_group - - out_shard = F.linear(x_replica, w_shard, b_shard) - assert str(out_shard.sharding_spec.sharding_sequence) == "[R, R, S0]" - - # each row only has a mini-batch - expected_out_shard = torch.chunk(out, chunks=2, dim=2)[row_id] - assert torch.allclose(out_shard, expected_out_shard) - - ######################## - # S0RR x RS1 -> S0RS1 # - ######################## - # w will be transposed in F.linear - x_shard = torch.chunk(x.detach().clone(), chunks=2, dim=0)[row_id] - w_shard = torch.chunk(w.detach().clone(), chunks=2, dim=0)[column_id] - b_shard = torch.chunk(b.detach().clone(), chunks=2, dim=0)[column_id] - - # adding sharding spec - x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={0: [0]}) - w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={0: [1]}) - b_shard.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={0: [1]}) - - # check sharding spec - assert str(x_shard.sharding_spec.sharding_sequence) == "[S0, R, R]" - assert str(w_shard.sharding_spec.sharding_sequence) == "[S1, R]" - assert str(b_shard.sharding_spec.sharding_sequence) == "[S1]" - - w_shard.pg_axis0 = col_process_group - w_shard.pg_axis1 = row_process_group - - out_shard = F.linear(x_shard, w_shard, b_shard) - - # each row only has a mini-batch - expected_out_shard = torch.chunk(out, chunks=2, dim=0)[row_id] - expected_out_shard = torch.chunk(expected_out_shard, chunks=2, dim=2)[column_id] - assert torch.allclose(out_shard, expected_out_shard) - - ######################## - # S0RS1 x S1R -> S0RR # - ######################## - # w will be transposed in F.linear - x_shard = torch.chunk(x.clone(), chunks=2, dim=0)[row_id] - x_shard = torch.chunk(x_shard, chunks=2, dim=2)[column_id] - w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[column_id] - b_replica = b.clone() - - # adding sharding spec - x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={0: [0], 2: [1]}) - w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={1: [1]}) - b_replica.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={}) - - # check sharding spec - assert str(x_shard.sharding_spec.sharding_sequence) == "[S0, R, S1]" - assert str(w_shard.sharding_spec.sharding_sequence) == "[R, S1]" - assert str(b_replica.sharding_spec.sharding_sequence) == "[R]" - - w_shard.pg_axis0 = col_process_group - w_shard.pg_axis1 = row_process_group - - out_shard = F.linear(x_shard, w_shard, b_replica) - - # each row only has a mini-batch - expected_out_shard = torch.chunk(out, chunks=2, dim=0)[row_id] - assert torch.allclose(out_shard, expected_out_shard) - - ######################## - # RRS0 x S0R -> RRR # - ######################## - # w will be transposed in F.linear - x_shard = torch.chunk(x.clone(), chunks=2, dim=2)[row_id] - w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[row_id] - b_replica = b.clone() - - # adding sharding spec - x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={2: [0]}) - w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={1: [0]}) - b_replica.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={}) - - # check sharding spec - assert str(x_shard.sharding_spec.sharding_sequence) == "[R, R, S0]" - assert str(w_shard.sharding_spec.sharding_sequence) == "[R, S0]" - assert str(b_replica.sharding_spec.sharding_sequence) == "[R]" - - w_shard.pg_axis0 = col_process_group - w_shard.pg_axis1 = row_process_group - - out_shard = F.linear(x_shard, w_shard, b_replica) - - # each row only has a mini-batch - expected_out_shard = out - assert torch.allclose(out_shard, expected_out_shard) - - ######################## - # RS0S1 x S1R -> RS0R # - ######################## - # w will be transposed in F.linear - x_shard = torch.chunk(x.clone(), chunks=2, dim=1)[row_id] - x_shard = torch.chunk(x_shard, chunks=2, dim=2)[column_id] - w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[column_id] - b_replica = b.clone() - - # adding sharding spec - x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={1: [0], 2: [1]}) - w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={1: [1]}) - b_replica.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={}) - - # check sharding spec - assert str(x_shard.sharding_spec.sharding_sequence) == "[R, S0, S1]" - assert str(w_shard.sharding_spec.sharding_sequence) == "[R, S1]" - assert str(b_replica.sharding_spec.sharding_sequence) == "[R]" - - w_shard.pg_axis0 = col_process_group - w_shard.pg_axis1 = row_process_group - - out_shard = F.linear(x_shard, w_shard, b_replica) - - # each row only has a mini-batch - expected_out_shard = torch.chunk(out, chunks=2, dim=1)[row_id] - assert torch.allclose(out_shard, expected_out_shard) - - ######################## - # RRS0 x S0S1 -> RRS1 # - ######################## - # w will be transposed in F.linear - x_shard = torch.chunk(x.clone(), chunks=2, dim=2)[row_id] - w_shard = torch.chunk(w.clone(), chunks=2, dim=1)[row_id] - w_shard = torch.chunk(w_shard, chunks=2, dim=0)[column_id] - b_shard = torch.chunk(b.clone(), chunks=2, dim=0)[column_id] - - # adding sharding spec - x_shard.sharding_spec = ShardingSpec(device_mesh, x.shape, dim_partition_dict={2: [0]}) - w_shard.sharding_spec = ShardingSpec(device_mesh, w.shape, dim_partition_dict={0: [1], 1: [0]}) - b_shard.sharding_spec = ShardingSpec(device_mesh, b.shape, dim_partition_dict={0: [1]}) - - # check sharding spec - assert str(x_shard.sharding_spec.sharding_sequence) == "[R, R, S0]" - assert str(w_shard.sharding_spec.sharding_sequence) == "[S1, S0]" - assert str(b_shard.sharding_spec.sharding_sequence) == "[S1]" - - w_shard.pg_axis0 = col_process_group - w_shard.pg_axis1 = row_process_group - - out_shard = F.linear(x_shard, w_shard, b_shard) - - # each row only has a mini-batch - expected_out_shard = torch.chunk(out, chunks=2, dim=2)[column_id] - assert torch.allclose(out_shard, expected_out_shard) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [4]) -@rerun_if_address_is_in_use() -def test_sharded_mlp(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_sharded_mlp(4) diff --git a/tests/test_tensor/test_tp_with_zero.py b/tests/test_tensor/test_tp_with_zero.py deleted file mode 100644 index 539806cb1..000000000 --- a/tests/test_tensor/test_tp_with_zero.py +++ /dev/null @@ -1,143 +0,0 @@ -import pytest -import torch -from torch.nn.parallel import DistributedDataParallel as DDP - -import colossalai -from colossalai.amp import convert_to_apex_amp -from colossalai.tensor import ColoTensor, ColoTensorSpec, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec -from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext, GeminiAdamOptimizer, GeminiDDP, ZeroDDP -from colossalai.zero.gemini import search_chunk_configuration -from tests.components_to_test.registry import non_distributed_component_funcs -from tests.test_tensor.common_utils import set_seed, tensor_shard_equal -from tests.test_tensor.model.test_gpt2 import init_megatron_spec - - -def check_param(model: ZeroDDP, torch_model: torch.nn.Module, pg: ProcessGroup): - zero_dict = model.state_dict(only_rank_0=False) - torch_dict = torch_model.state_dict() - - for key, value in torch_dict.items(): - # key is 'module.model.PARAMETER', so we truncate it - key = key[7:] - assert key in zero_dict, "{} not in ZeRO dictionary.".format(key) - temp_zero_value = zero_dict[key].to(device=value.device, dtype=value.dtype) - # debug_print([0], "max range: ", key, torch.max(torch.abs(value - temp_zero_value))) - assert tensor_shard_equal(value, temp_zero_value, pg.tp_local_rank(), pg.tp_world_size()), \ - "parameter '{}' has problem.".format(key) - - -def run_fwd_bwd(model, criterion, optimizer, input_ids): - optimizer.zero_grad() - logits = model(input_ids) - logits = logits.float() - loss = criterion(logits, input_ids) - optimizer.backward(loss) - return logits - - -def init_1d_row_spec(model, pg: ProcessGroup): - spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - for n, p in model.named_parameters(): - p.set_process_group(pg) - if 'weight' in n and 'ln' not in n: - p.set_tensor_spec(*spec) - - -def init_1d_col_spec(model, pg: ProcessGroup): - spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - for n, p in model.named_parameters(): - p.set_process_group(pg) - if 'ln' not in n and ('weight' in n or 'bias' in n): - p.set_tensor_spec(*spec) - - -@parameterize('placement_policy', ['cuda', 'cpu']) -def run_gpt(placement_policy, tp_init_spec_func=None): - set_seed(42) - get_components_func = non_distributed_component_funcs.get_callable('gpt2') - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - - with ColoInitContext(device=get_current_device()): - model = model_builder() - model = model.cuda() - torch_model = model_builder().cuda() - - for torch_p, p in zip(torch_model.parameters(), model.parameters()): - torch_p.data.copy_(p.data) - - world_size = torch.distributed.get_world_size() - - # world size, dp = 2, tp =2, construct a hybrid parallelism. - if world_size == 4: - pg = ProcessGroup(tp_degree=2) - else: - pg = ProcessGroup(tp_degree=world_size) - - if tp_init_spec_func: - tp_init_spec_func(model, pg) - - dp_world_size = pg.dp_world_size() - config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) - config_dict[dp_world_size]['chunk_size'] = 5000 - config_dict[dp_world_size]['keep_gathered'] = False - if placement_policy != 'cuda': - init_device = torch.device('cpu') - else: - init_device = None - - model = GeminiDDP(model, init_device, placement_policy, True, False) - # The same as the following 3 lines - # chunk_manager = ChunkManager(config_dict, init_device=init_device) - # gemini_manager = GeminiManager(placement_policy, chunk_manager) - # model = ZeroDDP(model, gemini_manager, pin_memory=True) - - zero_optim = GeminiAdamOptimizer(model, lr=1e-3, initial_scale=1) - # The same as the following 2 lines - # optimizer = HybridAdam(model.parameters(), lr=1e-3) - # zero_optim = ZeroOptimizer(optimizer, model, initial_scale=1) - - amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1) - torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) - torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) - torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) - - check_param(model, torch_model, pg) - - model.eval() - torch_model.eval() - - set_seed(pg.dp_local_rank()) - for i, (input_ids, label) in enumerate(train_dataloader): - if i > 2: - break - input_ids_colo = ColoTensor.from_torch_tensor(input_ids, ColoTensorSpec(pg)) - zero_logits = run_fwd_bwd(model, criterion, zero_optim, input_ids_colo) - torch_logits = run_fwd_bwd(torch_model, criterion, torch_optim, input_ids) - assert torch.allclose(zero_logits, torch_logits, rtol=1e-3, atol=1e-2) - - zero_optim.step() - torch_optim.step() - check_param(model, torch_model, pg) - - -def run_dist(rank, world_size, port): - config = {} - colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - if world_size == 4: - run_gpt(tp_init_spec_func=init_megatron_spec) - else: - run_gpt(tp_init_spec_func=init_1d_col_spec) - run_gpt(tp_init_spec_func=init_1d_row_spec) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@rerun_if_address_is_in_use() -def test_gpt(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_gpt(4) diff --git a/tests/test_utils/test_colo_checkpoint.py b/tests/test_utils/test_colo_checkpoint.py deleted file mode 100644 index 89760a545..000000000 --- a/tests/test_utils/test_colo_checkpoint.py +++ /dev/null @@ -1,206 +0,0 @@ -import os -import shutil -from copy import deepcopy - -import pytest -import torch -import torch.distributed as dist -from torch.optim.lr_scheduler import CosineAnnealingLR, MultiplicativeLR - -import colossalai -from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR -from colossalai.nn.optimizer import ColossalaiOptimizer -from colossalai.tensor import ColoTensor, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec -from colossalai.testing import rerun_if_address_is_in_use, spawn -from colossalai.utils.checkpoint import load_checkpoint, save_checkpoint -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext -from tests.components_to_test.registry import non_distributed_component_funcs - - -def init_1d_row_linear(weight: ColoTensor, pg: ProcessGroup): - spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - weight.set_process_group(pg) - weight.set_tensor_spec(*spec) - - -def init_1d_col_linear(weight, pg): - spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - weight.set_process_group(pg) - weight.set_tensor_spec(*spec) - - -def init_1d_row_embedding(weight, pg): - spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - weight.set_process_group(pg) - weight.set_tensor_spec(*spec) - - -def init_1d_col_embedding(weight, pg): - spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - weight.set_process_group(pg) - weight.set_tensor_spec(*spec) - - -def init_1d_row_for_linear_weight_spec(model, pg: ProcessGroup): - spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - for name, p in model.named_parameters(): - if not isinstance(p, ColoTensor): - continue - if 'embed' in name and 'weight' in name: - init_1d_col_embedding(p, pg) - if 'proj1' in name and ('weight' in name or 'bias' in name): - init_1d_col_linear(p, pg) - if 'proj2' in name and 'weight' in name: - init_1d_row_linear(p, pg) - if 'classifier' in name and ('weight' in name or 'bias' in name): - init_1d_col_linear(p, pg) - - -def check_param_equal(model, torch_model): - for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()): - assert torch.all(p.data == tp.data), "{} went wrong.\n {} vs {}\n{}".format(n, p, tp, p.shape) - - -def remove(path): - """ param could either be relative or absolute. """ - if os.path.isfile(path) or os.path.islink(path): - os.remove(path) - elif os.path.isdir(path): - shutil.rmtree(path) - else: - raise ValueError("file {} is not a file or dir.".format(path)) - - -def compare_optims(optim1, optim2): - state1 = optim1.state_dict()['state'] - state2 = optim2.state_dict()['state'] - for k, p1 in state1.items(): - if k not in state2: - continue - p2 = state2[k] - for n, t1 in p1.items(): - if n not in p2: - continue - t2 = p2[n] - if isinstance(t1, ColoTensor): - assert isinstance(t2, ColoTensor) - assert torch.allclose(t1, t2, rtol=0, atol=0) - - -def _run_checkpoint(model_name, init_spec_func, use_ddp, use_mp_reload, test_scheduler, pg): - get_components_func = non_distributed_component_funcs.get_callable(model_name) - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - - rank = torch.distributed.get_rank() - world_size = torch.distributed.get_world_size() - - # set_seed(1) - with ColoInitContext(device=get_current_device()): - model = model_builder(checkpoint=True) - - if use_mp_reload: - if 'bert' == model_name: - for name, p in model.named_parameters(): - if not isinstance(p, ColoTensor): - continue - # num_class = type_vocab_size = 2 | (8, 2) - if 'classifier' in name and 'weight' in name: - init_1d_row_linear(p, pg) - # num_class = vocab_size = 30524 | (30524, 8) - elif 'word_embeddings' in name and 'weight' in name: - init_1d_row_embedding(p, pg) - # num_class = seq_len = 512 | (512, 8) - elif 'position_embeddings' in name and 'weight' in name: - init_1d_row_embedding(p, pg) - # num_class = type_vocab_size = 2 | (2, 8) - elif 'token_type_embeddings' in name and 'weight' in name: - init_1d_col_embedding(p, pg) - elif p.process_group.tp_world_size() == 1: - p.set_process_group(pg) - elif "simple_net" == model_name: - init_spec_func(model, pg) - - model_reload = deepcopy(model) - model = model.cuda() - model.eval() - - model_reload = model_reload.cuda() - model_reload.eval() - - opt_class = torch.optim.Adam - colo_optimizer = ColossalaiOptimizer(opt_class(model.parameters(), lr=0.1)) - colo_optimizer_reload = ColossalaiOptimizer(opt_class(model_reload.parameters(), lr=0.1)) - - for i, (data, label) in enumerate(train_dataloader): - - # Zero grad - colo_optimizer.zero_grad() - colo_optimizer_reload.zero_grad() - - data = data.to(get_current_device()) - label = label.to(get_current_device()) - - dist.broadcast(data, pg.tp_rank_list()[0], pg.tp_process_group()) - dist.broadcast(label, pg.tp_rank_list()[0], pg.tp_process_group()) - - # Bcast rank0 data to all processes - if criterion: - output = model(data) - output_reload = model_reload(data) - loss = criterion(output, label) - loss_reload = criterion(output_reload, label) - else: - loss = model(data, label) - loss_reload = model_reload(data, label) - - loss.backward() - loss_reload.backward() - - colo_optimizer.step() - colo_optimizer_reload.step() - - if i > 2: - break - - if not os.path.isdir('./checkpoint') and rank == 0: - os.mkdir('./checkpoint') - dist.barrier() - - save_checkpoint('./checkpoint', 0, model, colo_optimizer, None) - load_checkpoint('./checkpoint', 0, model_reload, colo_optimizer_reload, None) - - check_param_equal(model, model_reload) - compare_optims(colo_optimizer, colo_optimizer_reload) - - if rank == 0: - remove('./checkpoint') - dist.barrier() - - -def run_dist(rank, world_size, port, use_ddp, use_mp_reload, test_scheduler): - colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - pg = ProcessGroup(tp_degree=world_size) - - # the data loader of BERT is in DDP mode, causing the input data is not replicated in the TP context - for model_name in ['bert']: - _run_checkpoint(model_name, - init_1d_row_for_linear_weight_spec, - use_ddp, - use_mp_reload, - test_scheduler=test_scheduler, - pg=pg) - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 2]) -@pytest.mark.parametrize('use_ddp', [False]) -@pytest.mark.parametrize('use_mp_reload', [True, False]) -# @pytest.mark.parametrize('test_scheduler', ['colossalai_cosine_warmup', 'torch_cosine', 'torch_lambda']) -@rerun_if_address_is_in_use() -def test_checkpoint(world_size, use_ddp, use_mp_reload, test_scheduler=None): - spawn(run_dist, world_size, use_ddp=use_ddp, use_mp_reload=use_mp_reload, test_scheduler=test_scheduler) - - -if __name__ == '__main__': - test_checkpoint(2, use_ddp=False, use_mp_reload=True, test_scheduler="torch_cosine") diff --git a/tests/test_utils/test_norm_gradient_clipping.py b/tests/test_utils/test_norm_gradient_clipping.py index c0d678026..4fd7c3c60 100644 --- a/tests/test_utils/test_norm_gradient_clipping.py +++ b/tests/test_utils/test_norm_gradient_clipping.py @@ -66,6 +66,7 @@ def run_dist(rank, world_size, port): run_grad_clip_norm(world_size=world_size) +@pytest.mark.skip("this need to be updated") @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 2]) @rerun_if_address_is_in_use() diff --git a/tests/test_zero/test_gemini/test_chunk_mgrv2.py b/tests/test_zero/test_gemini/test_chunk_mgrv2.py index 7ea063877..d6c4f8bd8 100644 --- a/tests/test_zero/test_gemini/test_chunk_mgrv2.py +++ b/tests/test_zero/test_gemini/test_chunk_mgrv2.py @@ -1,8 +1,9 @@ import pytest import torch +from torch.distributed.distributed_c10d import _get_default_group import colossalai -from colossalai.tensor import ColoTensor, ColoTensorSpec, ProcessGroup +from colossalai.tensor import ColoTensor from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.zero.gemini.chunk import ChunkManager from tests.test_tensor.common_utils import debug_print @@ -15,19 +16,18 @@ CPU_MEM = {True: {True: 0, False: 0}, False: {True: 512, False: 0}} @parameterize('keep_gathered', [True, False]) @parameterize('pin_memory', [True, False]) def exam_chunk_memory(keep_gathered, pin_memory): - pg = ProcessGroup() - debug_print([0], "keep_gathered: {}, pin_memory: {}".format(keep_gathered, pin_memory)) - params = [ColoTensor(torch.rand(8, 8), spec=ColoTensorSpec(pg)) for _ in range(3)] + params = [ColoTensor(torch.rand(8, 8)) for _ in range(3)] config = {2: dict(chunk_size=128, keep_gathered=keep_gathered)} chunk_manager = ChunkManager(config) assert chunk_manager.total_mem['cpu'] == 0 assert chunk_manager.total_mem['cuda'] == 0 + process_group = _get_default_group() for p in params: - chunk_manager.register_tensor(p, 'param', 2, pin_memory=pin_memory) + chunk_manager.register_tensor(p, 'param', 2, process_group, pin_memory=pin_memory) chunk_manager.close_all_groups() assert chunk_manager.total_mem['cpu'] == CPU_MEM[keep_gathered][pin_memory] assert chunk_manager.total_mem['cuda'] == CUDA_MEM_0[keep_gathered] diff --git a/tests/test_zero/test_gemini/test_chunkv2.py b/tests/test_zero/test_gemini/test_chunkv2.py index 1cb31b260..cc598ee60 100644 --- a/tests/test_zero/test_gemini/test_chunkv2.py +++ b/tests/test_zero/test_gemini/test_chunkv2.py @@ -1,10 +1,10 @@ import pytest import torch import torch.distributed as dist +from torch.distributed.distributed_c10d import _get_default_group import colossalai from colossalai.tensor import ColoParameter -from colossalai.tensor import ProcessGroup as ColoProcessGroup from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils import get_current_device from colossalai.zero.gemini import TensorState @@ -36,7 +36,7 @@ def check_equal(param, param_cp): @parameterize('pin_memory', [True, False]) def exam_chunk_basic(init_device, keep_gathered, pin_memory): world_size = torch.distributed.get_world_size() - pg = ColoProcessGroup() + pg = _get_default_group() my_chunk = Chunk(chunk_size=1024, process_group=pg, dtype=torch.float32, diff --git a/tests/test_zero/test_gemini/test_fwd_bwd.py b/tests/test_zero/test_gemini/test_fwd_bwd.py index 9c5455b83..4cbf564ec 100644 --- a/tests/test_zero/test_gemini/test_fwd_bwd.py +++ b/tests/test_zero/test_gemini/test_fwd_bwd.py @@ -1,23 +1,40 @@ import pytest import torch +import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from torch.testing import assert_close import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.nn.optimizer import HybridAdam -from colossalai.tensor import ProcessGroup from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext, ZeroDDP, ZeroOptimizer -from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration -from colossalai.zero.gemini.gemini_mgr import GeminiManager -from tests.components_to_test import run_fwd, run_fwd_bwd +from colossalai.zero import GeminiDDP, GeminiOptimizer +from colossalai.zero.gemini.chunk import search_chunk_configuration +from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import set_seed +PLACEMENT_CONFIGS = [ + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0 + }, # zero2 + { + 'placement_policy': 'static', + 'shard_param_frac': 1.0 + }, # zero3 + { + 'placement_policy': 'static', + 'shard_param_frac': 0.5 + }, # zero3-half + { + 'placement_policy': 'auto' + } +] -def check_grad(model: ZeroDDP, torch_model: torch.nn.Module): + +def check_grad(model: GeminiDDP, torch_model: torch.nn.Module): chunk_manager = model.chunk_manager param_list = [p for p in model.parameters()] chunk_list = chunk_manager.get_chunks(param_list) @@ -28,12 +45,12 @@ def check_grad(model: ZeroDDP, torch_model: torch.nn.Module): assert_close(p0, p1.grad, rtol=1e-3, atol=5e-5) -@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) +@parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('keep_gather', [False, True]) @parameterize('model_name', ['gpt2', 'bert', 'albert']) @parameterize('use_grad_checkpoint', [False, True]) def exam_gpt_fwd_bwd( - placement_policy, + placement_config, keep_gather, model_name: str, use_grad_checkpoint: bool = False, @@ -43,8 +60,7 @@ def exam_gpt_fwd_bwd( model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() set_seed(42) - with ColoInitContext(device=init_device): - model = model_builder(use_grad_checkpoint) + model = model_builder(use_grad_checkpoint) set_seed(42) torch_model = model_builder(use_grad_checkpoint).cuda() @@ -55,19 +71,17 @@ def exam_gpt_fwd_bwd( config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gather - chunk_manager = ChunkManager(config_dict) - gemini_manager = GeminiManager(placement_policy, chunk_manager) - model = ZeroDDP(model, gemini_manager, pin_memory=True) + model = GeminiDDP(model, config_dict, init_device, pin_memory=True, **placement_config) optimizer = HybridAdam(model.parameters(), lr=1e-3) - zero_optim = ZeroOptimizer(optimizer, model, initial_scale=1) + zero_optim = GeminiOptimizer(optimizer, model, initial_scale=1) - pg = ProcessGroup() + rank = dist.get_rank() amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1) torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) - torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) + torch_model = DDP(torch_model, device_ids=[rank]) - set_seed(pg.dp_local_rank()) + set_seed(rank) for i, (input_ids, label) in enumerate(train_dataloader): # you can only test a single fwd + bwd. # after bwd param is grad for Gemini, due to the chunk reuse optimization. @@ -89,65 +103,10 @@ def exam_gpt_fwd_bwd( check_grad(model, torch_model) -@parameterize('placement_policy', ['cuda', 'cpu']) -@parameterize('keep_gather', [False, True]) -@parameterize('model_name', ['gpt2', 'bert', 'albert']) -@parameterize('scatter_after_inference', [False, True]) -def exam_gpt_inference( - placement_policy, - keep_gather, - model_name: str, - scatter_after_inference: bool = False, -): - init_device = get_current_device() - get_components_func = non_distributed_component_funcs.get_callable(model_name) - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - - set_seed(42) - with ColoInitContext(device=init_device): - model = model_builder() - - set_seed(42) - torch_model = model_builder().cuda() - for torch_p, p in zip(torch_model.parameters(), model.parameters()): - torch_p.data.copy_(p.data) - - world_size = torch.distributed.get_world_size() - config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) - config_dict[world_size]['chunk_size'] = 5000 - config_dict[world_size]['keep_gathered'] = keep_gather - chunk_manager = ChunkManager(config_dict) - gemini_manager = GeminiManager(placement_policy, chunk_manager) - model = ZeroDDP(model, gemini_manager, pin_memory=True, scatter_after_inference=scatter_after_inference) - - pg = ProcessGroup() - amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False, loss_scale=1) - torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) - torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) - torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group()) - - set_seed(pg.dp_local_rank()) - model.eval() - torch_model.eval() - for i, (input_ids, label) in enumerate(train_dataloader): - # you can only test a single fwd + bwd. - # after bwd param is grad for Gemini, due to the chunk reuse optimization. - if i > 0: - break - with torch.no_grad(): - input_ids, label = input_ids.cuda(), label.cuda() - - torch_loss = run_fwd(torch_model, input_ids, label, criterion) - loss = run_fwd(model, input_ids, label, criterion) - - assert torch.equal(torch_loss, loss) - - def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_gpt_fwd_bwd() - exam_gpt_inference() @pytest.mark.dist diff --git a/tests/test_zero/test_gemini/test_gemini_use_rmt.py b/tests/test_zero/test_gemini/test_gemini_use_rmt.py index 00e712050..a80a2f62d 100644 --- a/tests/test_zero/test_gemini/test_gemini_use_rmt.py +++ b/tests/test_zero/test_gemini/test_gemini_use_rmt.py @@ -1,12 +1,11 @@ import pytest import torch +import torch.distributed as dist import colossalai -from colossalai.tensor import ProcessGroup from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn -from colossalai.zero import ColoInitContext, ZeroDDP -from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration -from colossalai.zero.gemini.gemini_mgr import GeminiManager +from colossalai.zero import GeminiDDP +from colossalai.zero.gemini.chunk import search_chunk_configuration from colossalai.zero.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs @@ -24,8 +23,7 @@ def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_ get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - with ColoInitContext(device='cpu'): - model = model_builder(use_grad_checkpoint) + model = model_builder(use_grad_checkpoint).cuda() print(f'model_name {model_name}') runtime_mem_tracer = RuntimeMemTracer(model) @@ -59,12 +57,13 @@ def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_ config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gather - chunk_manager = ChunkManager(config_dict) - gemini_manager = GeminiManager(placement_policy, chunk_manager, memstats) - model = ZeroDDP(model, gemini_manager, pin_memory=True) + model = GeminiDDP(model, + chunk_config_dict=config_dict, + placement_policy=placement_policy, + pin_memory=True, + memstats=memstats) - pg = ProcessGroup() - set_seed(pg.dp_local_rank()) + set_seed(dist.get_rank()) for i, (input_ids, label) in enumerate(train_dataloader): # you can only test a single fwd + bwd. # after bwd param is grad for Gemini, due to the chunk reuse optimization. @@ -76,7 +75,7 @@ def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_ set_seed(42) loss = run_fwd_bwd(model, input_ids, label, criterion, model) - gemini_non_model_data = gemini_manager._mem_stats_collector._memstats.non_model_data_list('cuda') + gemini_non_model_data = model.gemini_manager._mem_stats_collector._memstats.non_model_data_list('cuda') # print('gemini non model data:', gemini_non_model_data) @@ -90,6 +89,7 @@ def run_dist(rank, world_size, port): run_gemini_use_rmt() +@pytest.mark.skip("this is not used") @pytest.mark.dist @pytest.mark.parametrize('world_size', [1, 4]) @rerun_if_address_is_in_use() diff --git a/tests/test_zero/test_gemini/test_get_torch_model.py b/tests/test_zero/test_gemini/test_get_torch_model.py deleted file mode 100644 index b3e3b2b22..000000000 --- a/tests/test_zero/test_gemini/test_get_torch_model.py +++ /dev/null @@ -1,52 +0,0 @@ -import pytest -import torch - -import colossalai -from colossalai.tensor import ColoParameter -from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext, GeminiDDP -from colossalai.zero.gemini.utils import get_static_torch_model -from tests.components_to_test.registry import non_distributed_component_funcs - - -@parameterize('model_name', ['hanging_param_model', 'resnet18', 'gpt2']) -def run_convert_torch_module(model_name: str): - get_components_func = non_distributed_component_funcs.get_callable(model_name) - model_builder, _, _, _, _ = get_components_func() - - with ColoInitContext(device=torch.device("cpu")): - model = model_builder(checkpoint=False) - model = GeminiDDP(model, device=get_current_device(), placement_policy='auto', pin_memory=True) - pytorch_model = get_static_torch_model(model, only_rank_0=False) - - for n, p in pytorch_model.named_parameters(): - assert type(p) == torch.nn.Parameter, f"type error: {n} is a {type(p)}" - - # get the static model should not change the original model - for n, p in model.named_parameters(): - assert isinstance(p, ColoParameter) - - for (pn, pm), (cn, cm) in zip(pytorch_model.named_modules(), model.named_modules()): - assert pn == cn - assert id(pm) != id(cm) - for pp, cp in zip(pm.parameters(recurse=False), cm.parameters(recurse=False)): - assert id(pp) != id(cp) - assert pp.shape == cp.shape - - -def run_dist(rank, world_size, port): - config = {} - colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - run_convert_torch_module() - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@rerun_if_address_is_in_use() -def test_convert_torch_module(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_convert_torch_module(2) diff --git a/tests/test_zero/test_gemini/test_grad_clip.py b/tests/test_zero/test_gemini/test_grad_clip.py index ac19a27f4..82b9133b8 100644 --- a/tests/test_zero/test_gemini/test_grad_clip.py +++ b/tests/test_zero/test_gemini/test_grad_clip.py @@ -8,16 +8,38 @@ import colossalai from colossalai.amp import convert_to_apex_amp from colossalai.nn.optimizer import HybridAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext, ZeroDDP, ZeroOptimizer -from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration -from colossalai.zero.gemini.gemini_mgr import GeminiManager +from colossalai.zero import GeminiDDP, GeminiOptimizer +from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs from tests.test_tensor.common_utils import set_seed +PLACEMENT_CONFIGS = [ + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 0.0, + 'offload_param_frac': 0.0 + }, # zero2 + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 1.0, + 'offload_param_frac': 0.0 + }, # zero2-offload + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 0.5, + 'offload_param_frac': 0.0 + }, # zero2-offload-half + { + 'placement_policy': 'auto' + } +] -def check_param(model: ZeroDDP, torch_model: torch.nn.Module): + +def check_param(model: GeminiDDP, torch_model: torch.nn.Module): zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() @@ -30,9 +52,9 @@ def check_param(model: ZeroDDP, torch_model: torch.nn.Module): assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) -@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) +@parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('model_name', ['gpt2']) -def exam_grad_clipping(placement_policy, model_name: str): +def exam_grad_clipping(placement_config, model_name: str): set_seed(1912) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() @@ -43,9 +65,7 @@ def exam_grad_clipping(placement_policy, model_name: str): torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) - init_dev = get_current_device() - with ColoInitContext(device=init_dev): - model = model_builder() + model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) @@ -54,16 +74,19 @@ def exam_grad_clipping(placement_policy, model_name: str): config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = False - if placement_policy != 'cuda': + if placement_config['placement_policy'] != 'cuda': init_device = torch.device('cpu') else: init_device = None - chunk_manager = ChunkManager(config_dict, init_device=init_device) - gemini_manager = GeminiManager(placement_policy, chunk_manager) - model = ZeroDDP(model, gemini_manager, pin_memory=True) + + model = GeminiDDP(model, + chunk_config_dict=config_dict, + chunk_init_device=init_device, + pin_memory=True, + **placement_config) optimizer = HybridAdam(model.parameters(), lr=1e-3) - zero_optim = ZeroOptimizer(optimizer, model, initial_scale=32, clipping_norm=1.0) + zero_optim = GeminiOptimizer(optimizer, model, initial_scale=32, clipping_norm=1.0) model.train() torch_model.train() diff --git a/tests/test_zero/test_gemini/test_inference.py b/tests/test_zero/test_gemini/test_inference.py index fb2018f7b..20d145f96 100644 --- a/tests/test_zero/test_gemini/test_inference.py +++ b/tests/test_zero/test_gemini/test_inference.py @@ -11,15 +11,32 @@ from colossalai.amp import convert_to_apex_amp from colossalai.nn.optimizer import HybridAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext, ZeroDDP, ZeroOptimizer, post_process_colo_init_ctx, zero_model_wrapper -from colossalai.zero.gemini.chunk import ChunkManager, init_chunk_manager, search_chunk_configuration -from colossalai.zero.gemini.gemini_mgr import GeminiManager +from colossalai.zero import GeminiDDP, GeminiOptimizer +from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs -from tests.test_tensor.common_utils import debug_print, set_seed +from tests.test_tensor.common_utils import set_seed + +PLACEMENT_CONFIGS = [ + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0 + }, # zero2 + { + 'placement_policy': 'static', + 'shard_param_frac': 1.0 + }, # zero3 + { + 'placement_policy': 'static', + 'shard_param_frac': 0.5 + }, # zero3-half + { + 'placement_policy': 'auto' + } +] -def check_param(model: ZeroDDP, torch_model: torch.nn.Module): +def check_param(model: GeminiDDP, torch_model: torch.nn.Module): zero_dict = model.state_dict(only_rank_0=False) torch_dict = torch_model.state_dict() @@ -32,35 +49,24 @@ def check_param(model: ZeroDDP, torch_model: torch.nn.Module): assert_close(value, temp_zero_value, rtol=1e-3, atol=4e-3) -def multi_chunk_init(model: torch.nn.Module, placement_policy: str): +def multi_chunk_init(model: torch.nn.Module, placement_config: dict): world_size = dist.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = False - if placement_policy != 'cuda': - init_device = torch.device('cpu') - else: - init_device = None - chunk_manager = ChunkManager(config_dict, init_device=init_device) - gemini_manager = GeminiManager(placement_policy, chunk_manager) - model = ZeroDDP(model, gemini_manager, pin_memory=True) + model = GeminiDDP(model, config_dict, pin_memory=True, **placement_config) return model -def single_chunk_init(model: torch.nn.Module, placement_policy: str): - gemini_config = dict( - device=get_current_device(), - placement_policy=placement_policy, - pin_memory=True, - ) - model = zero_model_wrapper(model=model, zero_stage=3, gemini_config=gemini_config) +def single_chunk_init(model: torch.nn.Module, placement_config: dict): + model = GeminiDDP(model, chunk_init_device=get_current_device(), pin_memory=True, **placement_config) return model -@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) +@parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('model_name', ['gpt2']) @parameterize('model_init_func', [single_chunk_init, multi_chunk_init]) -def exam_inference(placement_policy: str, model_name: str, model_init_func: Callable): +def exam_inference(placement_config: dict, model_name: str, model_init_func: Callable): set_seed(19360226) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() @@ -70,17 +76,15 @@ def exam_inference(placement_policy: str, model_name: str, model_init_func: Call torch_optim = torch.optim.Adam(torch_model.parameters(), lr=1e-3) torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) - init_dev = get_current_device() - with ColoInitContext(device=init_dev): - model = model_builder() + model = model_builder().to(init_dev) for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) - model = model_init_func(model, placement_policy) + model = model_init_func(model, placement_config) optimizer = HybridAdam(model.parameters(), lr=1e-3) - zero_optim = ZeroOptimizer(optimizer, model, initial_scale=128) + zero_optim = GeminiOptimizer(optimizer, model, initial_scale=128) model.eval() torch_model.eval() @@ -95,7 +99,7 @@ def exam_inference(placement_policy: str, model_name: str, model_init_func: Call torch_optim.zero_grad() torch_loss = run_fwd_bwd(torch_model, input_ids, label, criterion, torch_optim) loss = run_fwd_bwd(model, input_ids, label, criterion, zero_optim) - assert_close(torch_loss, loss) + assert_close(torch_loss, loss, rtol=1e-5, atol=1e-5) zero_optim.step() torch_optim.step() check_param(model, torch_model) diff --git a/tests/test_zero/test_gemini/test_optim.py b/tests/test_zero/test_gemini/test_optim.py index a9ee67368..edcbada0a 100644 --- a/tests/test_zero/test_gemini/test_optim.py +++ b/tests/test_zero/test_gemini/test_optim.py @@ -9,12 +9,46 @@ from colossalai.amp import convert_to_apex_amp from colossalai.nn.optimizer import HybridAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext, ZeroDDP, ZeroOptimizer, post_process_colo_init_ctx -from colossalai.zero.gemini.chunk import ChunkManager, init_chunk_manager, search_chunk_configuration -from colossalai.zero.gemini.gemini_mgr import GeminiManager +from colossalai.zero import GeminiDDP, GeminiOptimizer +from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs -from tests.test_tensor.common_utils import debug_print, set_seed +from tests.test_tensor.common_utils import set_seed + +PLACEMENT_CONFIGS = [ + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 0.0 + }, # zero2 + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 1.0 + }, # zero2-offload + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 0.5 + }, # zero2-offload-half + { + 'placement_policy': 'static', + 'shard_param_frac': 1.0 + }, # zero3 + { + 'placement_policy': 'static', + 'shard_param_frac': 0.5 + }, # zero3-half + { + 'placement_policy': 'static', + 'shard_param_frac': 1.0, + 'offload_optim_frac': 1.0, + 'offload_param_frac': 1.0 + }, # zero3-offload-all + { + 'placement_policy': 'auto' + } +] # this model is large enough to slice to chunks TEST_MODELS = ['gpt2'] @@ -29,7 +63,7 @@ BF16_IGNORED_KEYS = [ ] -def check_param(model: ZeroDDP, torch_model: torch.nn.Module, dtype: torch.dtype): +def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dtype): zero_dict = model.state_dict(only_rank_0=False, dtype=dtype) torch_dict = torch_model.state_dict() @@ -51,10 +85,10 @@ def check_param(model: ZeroDDP, torch_model: torch.nn.Module, dtype: torch.dtype msg=lambda s: s + f'\n{key}\n{temp_zero_value.dtype}') -@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) +@parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('model_name', TEST_MODELS) @parameterize('mixed_precision', [torch.half, torch.bfloat16]) -def exam_model_step(placement_policy, model_name: str, mixed_precision: torch.dtype): +def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dtype): set_seed(42) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() @@ -65,9 +99,7 @@ def exam_model_step(placement_policy, model_name: str, mixed_precision: torch.dt torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) - init_dev = get_current_device() - with ColoInitContext(device=init_dev): - model = model_builder() + model = model_builder().cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) @@ -76,16 +108,10 @@ def exam_model_step(placement_policy, model_name: str, mixed_precision: torch.dt config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = False - if placement_policy != 'cuda': - init_device = torch.device('cpu') - else: - init_device = None - chunk_manager = ChunkManager(config_dict, init_device=init_device) - gemini_manager = GeminiManager(placement_policy, chunk_manager) - model = ZeroDDP(model, gemini_manager, pin_memory=True, mixed_precision=mixed_precision) + model = GeminiDDP(model, config_dict, **placement_config, mixed_precision=mixed_precision) optimizer = HybridAdam(model.parameters(), lr=1e-3) - zero_optim = ZeroOptimizer(optimizer, model, initial_scale=128) + zero_optim = GeminiOptimizer(optimizer, model, initial_scale=128) model.eval() torch_model.eval() @@ -109,10 +135,10 @@ def exam_model_step(placement_policy, model_name: str, mixed_precision: torch.dt check_param(model, torch_model, mixed_precision) -@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const']) +@parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('model_name', EXAMPLE_MODELS) @parameterize('mixed_precision', [torch.half, torch.bfloat16]) -def exam_tiny_example(placement_policy, model_name: str, mixed_precision: torch.dtype): +def exam_tiny_example(placement_config, model_name: str, mixed_precision: torch.dtype): set_seed(2008) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() @@ -123,18 +149,19 @@ def exam_tiny_example(placement_policy, model_name: str, mixed_precision: torch. torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config) torch_model = DDP(torch_model, device_ids=[dist.get_rank()]) - init_dev = get_current_device() - with ColoInitContext(device=init_dev): - model = model_builder() + model = model_builder().cuda() for torch_p, p in zip(torch_model.parameters(), model.parameters()): p.data.copy_(torch_p.data) - chunk_manager = init_chunk_manager(model=model, init_device=get_current_device(), search_range_m=1) - gemini_manager = GeminiManager(placement_policy, chunk_manager) - model = ZeroDDP(model, gemini_manager, pin_memory=True, mixed_precision=mixed_precision) + model = GeminiDDP(model, + chunk_init_device=get_current_device(), + search_range_m=1, + pin_memory=True, + mixed_precision=mixed_precision, + **placement_config) optimizer = HybridAdam(model.parameters(), lr=1e-3) - zero_optim = ZeroOptimizer(optimizer, model, initial_scale=2) + zero_optim = GeminiOptimizer(optimizer, model, initial_scale=2) model.eval() torch_model.eval() diff --git a/tests/test_zero/test_gemini/test_runtime_mem_tracer.py b/tests/test_zero/test_gemini/test_runtime_mem_tracer.py index 0e6f283aa..29bd61390 100644 --- a/tests/test_zero/test_gemini/test_runtime_mem_tracer.py +++ b/tests/test_zero/test_gemini/test_runtime_mem_tracer.py @@ -1,15 +1,16 @@ from copy import deepcopy import numpy as np +import pytest import torch from colossalai.testing import clear_cache_before_run -from colossalai.zero import ColoInitContext from colossalai.zero.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer from tests.components_to_test import run_fwd_bwd from tests.components_to_test.registry import non_distributed_component_funcs +@pytest.mark.skip("this is not used") @clear_cache_before_run() def test_runtime_mem_tracer(): test_models = ['gpt2', 'bert', 'simple_net', 'repeated_computed_layers', 'nested_model', 'albert'] @@ -18,8 +19,7 @@ def test_runtime_mem_tracer(): get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, _, _, criterion = get_components_func() - with ColoInitContext(device='cpu'): - model = model_builder(checkpoint=False) + model = model_builder(checkpoint=False).cuda() model_bk = deepcopy(model) runtime_mem_tracer = RuntimeMemTracer(model) diff --git a/tests/test_zero/test_gemini/test_search.py b/tests/test_zero/test_gemini/test_search.py index 51dd84aac..4c7f2ee6c 100644 --- a/tests/test_zero/test_gemini/test_search.py +++ b/tests/test_zero/test_gemini/test_search.py @@ -2,33 +2,20 @@ import pytest import torch import colossalai -from colossalai.tensor import ComputePattern, ComputeSpec, ProcessGroup, ShardSpec from colossalai.testing import rerun_if_address_is_in_use, spawn from colossalai.utils import get_current_device -from colossalai.zero import ColoInitContext from colossalai.zero.gemini.chunk import init_chunk_manager, search_chunk_configuration from tests.components_to_test.registry import non_distributed_component_funcs -def init_1d_row_spec(model, pg: ProcessGroup): - tensor_spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D)) - for n, p in model.named_parameters(): - if 'weight' in n and 'ln' not in n: - p.set_process_group(pg) - p.set_tensor_spec(*tensor_spec) - - def exam_search_chunk_size(): world_size = torch.distributed.get_world_size() - pg_tp = ProcessGroup(tp_degree=world_size) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() # make sure torch_model and model has the same parameter values - with ColoInitContext(device=get_current_device()): - model = model_builder() - init_1d_row_spec(model, pg_tp) + model = model_builder() config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=16, @@ -37,57 +24,19 @@ def exam_search_chunk_size(): for key in config_dict: chunk_size = config_dict[key]['chunk_size'] - if world_size == 1: + if world_size == 1 or True: assert chunk_size == 31616 else: assert chunk_size == 1024 -def exam_search_strict_ddp(): - world_size = torch.distributed.get_world_size() - default_shard_pg = ProcessGroup(tp_degree=world_size) - default_shard_spec = ShardSpec([-1], [world_size]) - - get_components_func = non_distributed_component_funcs.get_callable('gpt2') - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - # get the chunk configuration over replicated models - with ColoInitContext(device=get_current_device()): - ddp_model = model_builder() - re_dict, re_total, re_wasted = search_chunk_configuration(ddp_model, - search_range_m=1, - search_interval=16, - min_chunk_size_m=0, - filter_exlarge_params=True, - strict_ddp_flag=False) - # get the chunk configuration over sharded ddp models - with ColoInitContext(device=get_current_device(), default_pg=default_shard_pg, - default_dist_spec=default_shard_spec): - sharded_ddp_model = model_builder() - sh_dict, sh_total, sh_wasted = search_chunk_configuration(sharded_ddp_model, - search_range_m=1, - search_interval=16, - min_chunk_size_m=0, - filter_exlarge_params=True, - strict_ddp_flag=True) - assert re_dict == sh_dict - for key in re_dict: - assert re_dict[key] == sh_dict[key] - - assert re_total == sh_total - assert re_wasted == sh_wasted - - def exam_chunk_manager(): world_size = torch.distributed.get_world_size() - default_shard_pg = ProcessGroup(tp_degree=world_size) - default_shard_spec = ShardSpec([-1], [world_size]) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - with ColoInitContext(device=get_current_device(), default_pg=default_shard_pg, - default_dist_spec=default_shard_spec): - sharded_ddp_model = model_builder() + sharded_ddp_model = model_builder() chunk_manager = init_chunk_manager(sharded_ddp_model, get_current_device(), hidden_dim=16, @@ -103,7 +52,6 @@ def exam_chunk_manager(): def run_dist(rank, world_size, port): colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_search_chunk_size() - exam_search_strict_ddp() exam_chunk_manager() diff --git a/tests/test_zero/test_gemini/test_zeroddp_state_dict.py b/tests/test_zero/test_gemini/test_zeroddp_state_dict.py index 2a5a4ab83..656bd709e 100644 --- a/tests/test_zero/test_gemini/test_zeroddp_state_dict.py +++ b/tests/test_zero/test_gemini/test_zeroddp_state_dict.py @@ -4,31 +4,46 @@ from torch.testing import assert_close import colossalai from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext, ZeroDDP -from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration -from colossalai.zero.gemini.gemini_mgr import GeminiManager +from colossalai.zero import GeminiDDP +from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.components_to_test.registry import non_distributed_component_funcs -from tests.test_tensor.common_utils import debug_print, set_seed +from tests.test_tensor.common_utils import set_seed + +PLACEMENT_CONFIGS = [ + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0 + }, # zero2 + { + 'placement_policy': 'static', + 'shard_param_frac': 1.0 + }, # zero3 + { + 'placement_policy': 'static', + 'shard_param_frac': 0.5 + }, # zero3-half + { + 'placement_policy': 'auto' + } +] def ignore_the_first_parameter(model: torch.nn.Module): for name, param in model.named_parameters(): print(f"parameter `{name}` is set ignored") - ZeroDDP.set_params_to_ignore([param]) + GeminiDDP.set_params_to_ignore([param]) return -@parameterize('placement_policy', ['cuda', 'cpu', 'auto']) +@parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('keep_gathered', [True, False]) @parameterize('model_name', ['gpt2', 'bert']) -def exam_state_dict(placement_policy, keep_gathered, model_name: str): +def exam_state_dict(placement_config, keep_gathered, model_name: str): set_seed(431) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - with ColoInitContext(device=get_current_device()): - model = model_builder() + model = model_builder() torch_model = model_builder() for torch_p, p in zip(torch_model.parameters(), model.parameters()): @@ -38,9 +53,7 @@ def exam_state_dict(placement_policy, keep_gathered, model_name: str): config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gathered - chunk_manager = ChunkManager(config_dict) - gemini_manager = GeminiManager(placement_policy, chunk_manager) - model = ZeroDDP(model, gemini_manager, pin_memory=True) + model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True) model.train() zero_dict = model.state_dict(only_rank_0=False) @@ -52,16 +65,15 @@ def exam_state_dict(placement_policy, keep_gathered, model_name: str): assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5) -@parameterize('placement_policy', ['cuda', 'cpu', 'auto']) +@parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('keep_gathered', [True, False]) @parameterize('model_name', ['gpt2', 'bert']) -def exam_load_state_dict(placement_policy, keep_gathered, model_name: str): +def exam_load_state_dict(placement_config, keep_gathered, model_name: str): set_seed(431) get_components_func = non_distributed_component_funcs.get_callable(model_name) model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - with ColoInitContext(device=get_current_device()): - model = model_builder() + model = model_builder() set_seed(451) torch_model = model_builder() # get a different model @@ -71,13 +83,7 @@ def exam_load_state_dict(placement_policy, keep_gathered, model_name: str): config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gathered - if placement_policy != 'cuda': - init_device = torch.device('cpu') - else: - init_device = None - chunk_manager = ChunkManager(config_dict, init_device=init_device) - gemini_manager = GeminiManager(placement_policy, chunk_manager) - model = ZeroDDP(model, gemini_manager, pin_memory=True) + model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True) torch_dict = torch_model.state_dict() model.load_state_dict(torch_dict, strict=False) @@ -89,11 +95,37 @@ def exam_load_state_dict(placement_policy, keep_gathered, model_name: str): assert_close(value, temp_zero_value, rtol=1e-3, atol=1e-5) +@parameterize('placement_config', PLACEMENT_CONFIGS) +@parameterize('model_name', ['gpt2', 'bert']) +def exam_state_dict_shard(placement_config, model_name: str): + get_components_func = non_distributed_component_funcs.get_callable(model_name) + model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() + + model = model_builder() + + model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2 + + config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) + model = GeminiDDP(model, config_dict, **placement_config) + model.train() + + zero_dict = model.state_dict(only_rank_0=False) + accumulated_keys = set() + # ensure number of shards > 1 + for shard, _ in model.state_dict_shard(max_shard_size=(model_size / 3), only_rank_0=False): + for key, value in shard.items(): + assert key not in accumulated_keys, f"key `{key}` is duplicated." + accumulated_keys.add(key) + assert key in zero_dict, f"{key} not in ZeRO dictionary." + assert torch.equal(value, zero_dict[key]), f"{key} not equal." + + def run_dist(rank, world_size, port): config = {} colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') exam_state_dict() exam_load_state_dict() + exam_state_dict_shard() @pytest.mark.dist diff --git a/tests/test_zero/test_gemini/test_zeroddp_state_dict_shard.py b/tests/test_zero/test_gemini/test_zeroddp_state_dict_shard.py deleted file mode 100644 index d16bfb7d1..000000000 --- a/tests/test_zero/test_gemini/test_zeroddp_state_dict_shard.py +++ /dev/null @@ -1,56 +0,0 @@ -import pytest -import torch -from torch.testing import assert_close - -import colossalai -from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext, ZeroDDP -from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration -from colossalai.zero.gemini.gemini_mgr import GeminiManager -from tests.components_to_test.registry import non_distributed_component_funcs - - -@parameterize('placement_policy', ['cuda', 'cpu']) -@parameterize('model_name', ['gpt2', 'bert']) -def exam_state_dict(placement_policy, model_name: str): - get_components_func = non_distributed_component_funcs.get_callable(model_name) - model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - - with ColoInitContext(device=get_current_device()): - model = model_builder() - - model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2 - - config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) - chunk_manager = ChunkManager(config_dict) - gemini_manager = GeminiManager(placement_policy, chunk_manager) - model = ZeroDDP(model, gemini_manager) - model.train() - - zero_dict = model.state_dict(only_rank_0=False) - accumulated_keys = set() - # ensure number of shards > 1 - for shard, _ in model.state_dict_shard(max_shard_size=(model_size / 3), only_rank_0=False): - for key, value in shard.items(): - assert key not in accumulated_keys, f"key `{key}` is duplicated." - accumulated_keys.add(key) - assert key in zero_dict, f"{key} not in ZeRO dictionary." - assert torch.equal(value, zero_dict[key]), f"{key} not equal." - - -def run_dist(rank, world_size, port): - config = {} - colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') - exam_state_dict() - - -@pytest.mark.dist -@pytest.mark.parametrize('world_size', [1, 4]) -@rerun_if_address_is_in_use() -def test_zero_ddp_state_dict_shard(world_size): - spawn(run_dist, world_size) - - -if __name__ == '__main__': - test_zero_ddp_state_dict_shard(1) diff --git a/tests/test_zero/test_gemini/test_zerooptim_state_dict.py b/tests/test_zero/test_gemini/test_zerooptim_state_dict.py index ba016d652..09725e11e 100644 --- a/tests/test_zero/test_gemini/test_zerooptim_state_dict.py +++ b/tests/test_zero/test_gemini/test_zerooptim_state_dict.py @@ -5,42 +5,53 @@ import torch.distributed as dist import colossalai from colossalai.nn.optimizer import HybridAdam from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn -from colossalai.utils.cuda import get_current_device -from colossalai.zero import ColoInitContext, ZeroDDP, ZeroOptimizer -from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration -from colossalai.zero.gemini.gemini_mgr import GeminiManager +from colossalai.zero import GeminiDDP, GeminiOptimizer +from colossalai.zero.gemini.chunk import search_chunk_configuration from tests.components_to_test.registry import non_distributed_component_funcs -from tests.test_tensor.common_utils import debug_print, set_seed +from tests.test_tensor.common_utils import set_seed + +PLACEMENT_CONFIGS = [ + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 0.0 + }, # zero2 + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 1.0 + }, # zero2-offload + { + 'placement_policy': 'static', + 'shard_param_frac': 0.0, + 'offload_optim_frac': 0.5 + }, # zero2-offload-half + { + 'placement_policy': 'auto' + } +] -@parameterize('placement_policy', ['cuda', 'cpu', 'auto']) +@parameterize('placement_config', PLACEMENT_CONFIGS) @parameterize('keep_gathered', [True, False]) -def exam_zero_optim_state_dict(placement_policy, keep_gathered): +def exam_zero_optim_state_dict(placement_config, keep_gathered): set_seed(431) get_components_func = non_distributed_component_funcs.get_callable('gpt2') model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func() - with ColoInitContext(device=get_current_device()): - model = model_builder() + model = model_builder() set_seed(451) - torch_model = model_builder() # get a different model world_size = torch.distributed.get_world_size() config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100) config_dict[world_size]['chunk_size'] = 5000 config_dict[world_size]['keep_gathered'] = keep_gathered - if placement_policy != 'cuda': - init_device = torch.device('cpu') - else: - init_device = None - chunk_manager = ChunkManager(config_dict, init_device=init_device) - gemini_manager = GeminiManager(placement_policy, chunk_manager) - model = ZeroDDP(model, gemini_manager, pin_memory=True) + model = GeminiDDP(model, config_dict, **placement_config, pin_memory=True) optimizer = HybridAdam(model.parameters()) - optim = ZeroOptimizer(optimizer, model, initial_scale=32) # initialize the link between chunk16 and chunk32 + optim = GeminiOptimizer(optimizer, model, initial_scale=32) # initialize the link between chunk16 and chunk32 set_seed(dist.get_rank() * 3 + 128) model.train() diff --git a/tests/test_zero/test_low_level/test_zero_init.py b/tests/test_zero/test_low_level/test_zero_init.py deleted file mode 100644 index 368ef976e..000000000 --- a/tests/test_zero/test_low_level/test_zero_init.py +++ /dev/null @@ -1,55 +0,0 @@ -import pytest -import torch -import torch.distributed as dist -import torch.nn as nn - -import colossalai -from colossalai.tensor import ProcessGroup -from colossalai.testing import spawn -from colossalai.utils import get_current_device -from colossalai.zero import ColoInitContext, LowLevelZeroOptimizer - - -class MlpModel(nn.Module): - - def __init__(self): - super(MlpModel, self).__init__() - self.linear1 = nn.Linear(128, 256) - self.linear2 = nn.Linear(256, 512) - - def forward(self, x): - x = self.linear1(x) - x = self.linear2(x) - return x - - -def exam_zero_init(): - dp_2_tp_2_pg = ProcessGroup(dp_degree=2, tp_degree=2) - model1 = MlpModel().cuda() - with ColoInitContext(device=get_current_device(), default_pg=dp_2_tp_2_pg): - model2 = MlpModel() - optimizer1 = LowLevelZeroOptimizer(torch.optim.Adam(model1.parameters(), lr=1)) - optimizer2 = LowLevelZeroOptimizer(torch.optim.Adam(model2.parameters(), lr=1)) - - assert optimizer1._local_rank == optimizer2._local_rank - assert optimizer1._world_size == optimizer2._world_size - - mp_group1 = optimizer1.tp_pg - mp_group2 = optimizer2.tp_pg - assert dist.get_world_size(mp_group1) == dist.get_world_size(mp_group2) - assert dist.get_rank(mp_group1) == dist.get_rank(mp_group2) - - -def run_dist(rank, world_size, port): - config_dict = dict(parallel=dict(data=2, tensor=dict(size=2, mode='1d'))) - colossalai.launch(config=config_dict, rank=rank, world_size=world_size, port=port, host='localhost') - exam_zero_init() - - -@pytest.mark.dist -def test_zero_init(): - spawn(run_dist, 4) - - -if __name__ == '__main__': - test_zero_init() diff --git a/tests/test_zero/test_low_level/test_zero_tp.py b/tests/test_zero/test_low_level/test_zero_tp.py index 238de3334..4a2b49f63 100644 --- a/tests/test_zero/test_low_level/test_zero_tp.py +++ b/tests/test_zero/test_low_level/test_zero_tp.py @@ -85,6 +85,7 @@ def run_dist(rank, world_size, port): exam_zero_with_tp() +@pytest.mark.skip('this will be rewritten by shardformer') @pytest.mark.dist @rerun_if_address_is_in_use() def test_zero_with_tp():