[autoparallel] integrate device mesh initialization into autoparallelize (#2393)

* [autoparallel] integrate device mesh initialization into autoparallelize

* add megatron solution

* update gpt autoparallel examples with latest api

* adapt beta value to fit the current computation cost
This commit is contained in:
YuliangLiu0306
2023-01-11 14:03:49 +08:00
committed by GitHub
parent c72c827e95
commit 2731531bc2
7 changed files with 64 additions and 51 deletions

View File

@@ -16,14 +16,14 @@ from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch_from_torch
from colossalai.logging import disable_existing_loggers, get_dist_logger
BATCH_SIZE = 8
SEQ_LENGTH = 128
HIDDEN_DIM = 3072
BATCH_SIZE = 16
SEQ_LENGTH = 1024
HIDDEN_DIM = 4096
NUM_HEADS = 16
NUM_LAYERS = 1
NUM_LAYERS = 4
VOCAB_SIZE = 50257
NUM_STEPS = 10
FP16 = False
FP16 = True
def get_cpu_mem():
@@ -40,7 +40,7 @@ def get_mem_info(prefix=''):
def get_tflops(model_numel, batch_size, seq_len, step_time):
# Tflops_per_GPU = global_batch * global_numel * seq_len * 8 / #gpu
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) / 4
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12) / 8
# Randomly Generated Data
@@ -66,13 +66,7 @@ def main():
'attention_mask': torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64).to('meta'),
}
# Both device mesh initialization and model initialization will be integrated into autoparallelize
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
# Enable auto-parallel
gm, solution = initialize_model(model, meta_input_sample, device_mesh, return_solution=True)
gm, solution = autoparallelize(model, meta_input_sample, return_solution=True)
# print solution on rank 0
if gpc.get_global_rank() == 0: