mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-24 11:08:50 +00:00
[example] add palm pytorch version (#2172)
This commit is contained in:
109
examples/language/palm/train.py
Normal file
109
examples/language/palm/train.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import gzip
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import tqdm
|
||||
from palm_pytorch import PaLM
|
||||
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
|
||||
from torch.nn import functional as F
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
# constants
|
||||
|
||||
NUM_BATCHES = int(1e5)
|
||||
BATCH_SIZE = 4
|
||||
GRADIENT_ACCUMULATE_EVERY = 4
|
||||
LEARNING_RATE = 2e-4
|
||||
VALIDATE_EVERY = 100
|
||||
GENERATE_EVERY = 500
|
||||
GENERATE_LENGTH = 512
|
||||
SEQ_LEN = 1024
|
||||
|
||||
# helpers
|
||||
|
||||
|
||||
def cycle(loader):
|
||||
while True:
|
||||
for data in loader:
|
||||
yield data
|
||||
|
||||
|
||||
def decode_token(token):
|
||||
return str(chr(max(32, token)))
|
||||
|
||||
|
||||
def decode_tokens(tokens):
|
||||
return "".join(list(map(decode_token, tokens)))
|
||||
|
||||
|
||||
# instantiate GPT-like decoder model
|
||||
|
||||
model = PaLM(num_tokens=256, dim=512, depth=8)
|
||||
|
||||
model = AutoregressiveWrapper(model, max_seq_len=2048)
|
||||
model.cuda()
|
||||
|
||||
# prepare enwik8 data
|
||||
|
||||
with gzip.open("./data/enwik8.gz") as file:
|
||||
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
|
||||
trX, vaX = np.split(X, [int(90e6)])
|
||||
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)
|
||||
|
||||
|
||||
class TextSamplerDataset(Dataset):
|
||||
|
||||
def __init__(self, data, seq_len):
|
||||
super().__init__()
|
||||
self.data = data
|
||||
self.seq_len = seq_len
|
||||
|
||||
def __getitem__(self, index):
|
||||
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
|
||||
full_seq = self.data[rand_start:rand_start + self.seq_len + 1].long()
|
||||
return full_seq.cuda()
|
||||
|
||||
def __len__(self):
|
||||
return self.data.size(0) // self.seq_len
|
||||
|
||||
|
||||
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
|
||||
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
|
||||
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
|
||||
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
|
||||
|
||||
# optimizer
|
||||
|
||||
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
||||
|
||||
# training
|
||||
|
||||
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
|
||||
model.train()
|
||||
|
||||
for __ in range(GRADIENT_ACCUMULATE_EVERY):
|
||||
loss = model(next(train_loader))
|
||||
loss.backward()
|
||||
|
||||
print(f"training loss: {loss.item()}")
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
|
||||
optim.step()
|
||||
optim.zero_grad()
|
||||
|
||||
if i % VALIDATE_EVERY == 0:
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
loss = model(next(val_loader))
|
||||
print(f"validation loss: {loss.item()}")
|
||||
|
||||
if i % GENERATE_EVERY == 0:
|
||||
model.eval()
|
||||
inp = random.choice(val_dataset)[:-1]
|
||||
prime = decode_tokens(inp)
|
||||
print(f"%s \n\n %s", (prime, "*" * 100))
|
||||
|
||||
sample = model.generate(inp[None, ...], GENERATE_LENGTH)
|
||||
output_str = decode_tokens(sample[0])
|
||||
print(output_str)
|
Reference in New Issue
Block a user