mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-13 05:01:44 +00:00
[Inference/Refactor] Refactor compilation mechanism and unified multi hw (#5613)
* refactor compilation mechanism and unified multi hw * fix file path bug * add init.py to make pybind a module to avoid relative path error caused by softlink * delete duplicated micros * fix micros bug in gcc
This commit is contained in:
342
extensions/csrc/kernel/cuda/rms_layernorm_kernel.cu
Normal file
342
extensions/csrc/kernel/cuda/rms_layernorm_kernel.cu
Normal file
@@ -0,0 +1,342 @@
|
||||
/*This code from FasterTransformer:
|
||||
* https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/kernels/layernorm_kernels.cu
|
||||
* with minor changes. */
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <torch/extension.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
|
||||
#include "common/micros.h"
|
||||
#include "funcs/cast_functor.h"
|
||||
#include "funcs/binary_functor.h"
|
||||
#include "funcs/reduce_function.h"
|
||||
#include "common/vec_type_traits.h"
|
||||
|
||||
using colossalAI::funcs::block_reduce;
|
||||
using colossalAI::funcs::ReduceType;
|
||||
using colossalAI::funcs::CastFunctor;
|
||||
using colossalAI::funcs::BinaryOpFunctor;
|
||||
using colossalAI::funcs::BinaryOpType;
|
||||
using colossalAI::common::VecTypeTrait;
|
||||
|
||||
#define RMSNORM_LAUNCHER(UNROLL_FACTOR, THREADDIM) \
|
||||
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT( \
|
||||
input.element_size(), \
|
||||
input.scalar_type(), \
|
||||
"rms_layernorm_kernel", \
|
||||
rms_layernorm_kernel<scalar_t, UNROLL_FACTOR><<<grid, THREADDIM, 0, stream>>>( \
|
||||
out.data_ptr<scalar_t>(), \
|
||||
input.data_ptr<scalar_t>(), \
|
||||
weight.data_ptr<scalar_t>(), \
|
||||
epsilon, \
|
||||
num_tokens, \
|
||||
hidden_size);) \
|
||||
|
||||
#define FUSED_ADD_RMSNORM_LAUNCHER(UNROLL_FACTOR, THREADDIM) \
|
||||
DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT( \
|
||||
input.element_size(), \
|
||||
input.scalar_type(), \
|
||||
"fused_add_rms_layernorm_kernel", \
|
||||
fused_add_rms_layernorm_kernel<scalar_t, UNROLL_FACTOR><<<grid, THREADDIM, 0, stream>>>( \
|
||||
input.data_ptr<scalar_t>(), \
|
||||
residual.data_ptr<scalar_t>(), \
|
||||
weight.data_ptr<scalar_t>(), \
|
||||
epsilon, \
|
||||
num_tokens, \
|
||||
hidden_size);) \
|
||||
|
||||
// optimized for half and bf16
|
||||
template<typename scalar_t, int unroll_factor>
|
||||
__global__ void rms_layernorm_kernel(
|
||||
scalar_t* __restrict__ out, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float epsilon,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
using scalar2_t = typename VecTypeTrait<scalar_t, 2>::Type;
|
||||
BinaryOpFunctor<scalar2_t, scalar2_t, scalar2_t, BinaryOpType::kMul> mul_scalar2t;
|
||||
__shared__ float s_variance;
|
||||
|
||||
/*
|
||||
* since the open-sourced LLM's hidden dimensions mainly range from
|
||||
* 4096 (LLAMA-7B) to 8192 (LLAMA-65B), we thus set the supported
|
||||
* hidden dimension limit to 8192, and each thread's capacity
|
||||
* for caching input tensors to 8 (8192 = 8 * 1024) which
|
||||
* will cause problems for extremely large models, such as
|
||||
* Megatron-Turing NLG 530B with hidden dimensions up to 20480
|
||||
*/
|
||||
scalar2_t x_local[4];
|
||||
|
||||
scalar2_t* out_ptr = (scalar2_t*)out;
|
||||
const scalar2_t* input_ptr = (scalar2_t*)input;
|
||||
const scalar2_t* weight_ptr = (const scalar2_t*)weight;
|
||||
|
||||
float variance = 0.0f;
|
||||
int row_offset = blockIdx.x * hidden_size / 2;
|
||||
|
||||
|
||||
#pragma unroll unroll_factor
|
||||
for (int idx = threadIdx.x, cnt = 0; idx < hidden_size / 2; idx += blockDim.x, cnt++) {
|
||||
int id = row_offset + idx;
|
||||
x_local[cnt] = input_ptr[id];
|
||||
float v1 = CastFunctor<scalar_t,float>()(x_local[cnt].x);
|
||||
float v2 = CastFunctor<scalar_t,float>()(x_local[cnt].y);
|
||||
variance += v1 * v1 + v2 * v2;
|
||||
}
|
||||
block_reduce<float, ReduceType::kSum,1>(&variance);
|
||||
if (threadIdx.x == 0) {
|
||||
s_variance = rsqrtf(variance / hidden_size + epsilon);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
scalar2_t s_variance_2 = CastFunctor<float,scalar2_t>()(s_variance);
|
||||
#pragma unroll unroll_factor
|
||||
for (int idx = threadIdx.x, cnt = 0; idx < hidden_size / 2; idx += blockDim.x, cnt++) {
|
||||
int id = row_offset + idx;
|
||||
out_ptr[id] = mul_scalar2t(mul_scalar2t(x_local[cnt], s_variance_2), weight_ptr[idx]);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename scalar_t, int unroll_factor>
|
||||
__global__ void general_rms_layernorm_kernel(
|
||||
scalar_t* __restrict__ out, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float epsilon,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
__shared__ float s_variance;
|
||||
float variance = 0.0f;
|
||||
float x_local[8];
|
||||
|
||||
int row_offset = blockIdx.x * hidden_size;
|
||||
|
||||
#pragma unroll unroll_factor
|
||||
for (int idx = threadIdx.x, cnt = 0; idx < hidden_size; idx += blockDim.x, cnt++) {
|
||||
int id = row_offset + idx;
|
||||
x_local[cnt] = (float) input[id];
|
||||
variance += x_local[cnt] * x_local[cnt];
|
||||
}
|
||||
block_reduce<float, ReduceType::kSum,1>(&variance);
|
||||
if (threadIdx.x == 0) {
|
||||
s_variance = rsqrtf(variance / hidden_size + epsilon);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll unroll_factor
|
||||
for (int idx = threadIdx.x, cnt = 0; idx < hidden_size; idx += blockDim.x, cnt++) {
|
||||
int id = row_offset + idx;
|
||||
out[id] = ((scalar_t) (x_local[cnt] * s_variance)) * weight[idx];
|
||||
}
|
||||
}
|
||||
|
||||
// optimized for half and bf16
|
||||
template<typename scalar_t, int unroll_factor>
|
||||
__global__ void fused_add_rms_layernorm_kernel(
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
scalar_t* __restrict__ residual, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float epsilon,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
using scalar2_t = typename VecTypeTrait<scalar_t, 2>::Type;
|
||||
BinaryOpFunctor<scalar2_t, scalar2_t, scalar2_t, BinaryOpType::kAdd> add_scalar2t;
|
||||
BinaryOpFunctor<scalar2_t, scalar2_t, scalar2_t, BinaryOpType::kMul> mul_scalar2t;
|
||||
|
||||
__shared__ float s_variance;
|
||||
scalar2_t x_local[4];
|
||||
|
||||
scalar2_t* input_ptr = (scalar2_t*)input;
|
||||
scalar2_t* residual_ptr = (scalar2_t*)residual;
|
||||
const scalar2_t* weight_ptr = (const scalar2_t*)weight;
|
||||
|
||||
float variance = 0.0f;
|
||||
int row_offset = blockIdx.x * hidden_size / 2;
|
||||
|
||||
#pragma unroll unroll_factor
|
||||
for (int idx = threadIdx.x, cnt = 0; idx < hidden_size / 2; idx += blockDim.x, cnt++) {
|
||||
int id = row_offset + idx;
|
||||
x_local[cnt] = input_ptr[id];
|
||||
x_local[cnt] = add_scalar2t(x_local[cnt], residual_ptr[id]);
|
||||
float v1 = CastFunctor<scalar_t,float>()(x_local[cnt].x);
|
||||
float v2 = CastFunctor<scalar_t,float>()(x_local[cnt].y);
|
||||
variance += v1 * v1 + v2 * v2;
|
||||
residual_ptr[id] = x_local[cnt];
|
||||
}
|
||||
block_reduce<float, ReduceType::kSum,1>(&variance);
|
||||
if (threadIdx.x == 0) {
|
||||
s_variance = rsqrtf(variance / hidden_size + epsilon);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
scalar2_t s_variance_2 = CastFunctor<float, scalar2_t>()(s_variance);
|
||||
|
||||
#pragma unroll unroll_factor
|
||||
for (int idx = threadIdx.x, cnt = 0; idx < hidden_size / 2; idx += blockDim.x, cnt++) {
|
||||
int id = row_offset + idx;
|
||||
input_ptr[id] = mul_scalar2t(mul_scalar2t(x_local[cnt], s_variance_2), weight_ptr[idx]);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename scalar_t, int unroll_factor>
|
||||
__global__ void general_fused_add_rms_layernorm_kernel(
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
scalar_t* __restrict__ residual, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float epsilon,
|
||||
const int num_tokens,
|
||||
const int hidden_size) {
|
||||
__shared__ float s_variance;
|
||||
float variance = 0.0f;
|
||||
float x_local[8];
|
||||
|
||||
int row_offset = blockIdx.x * hidden_size;
|
||||
|
||||
#pragma unroll unroll_factor
|
||||
for (int idx = threadIdx.x, cnt = 0; idx < hidden_size; idx += blockDim.x, cnt++) {
|
||||
int id = row_offset + idx;
|
||||
x_local[cnt] = (float) input[id];
|
||||
x_local[cnt] += (float) residual[id];
|
||||
variance += x_local[cnt] * x_local[cnt];
|
||||
residual[id] = (scalar_t) x_local[cnt];
|
||||
}
|
||||
block_reduce<float, ReduceType::kSum,1>(&variance);
|
||||
if (threadIdx.x == 0) {
|
||||
s_variance = rsqrtf(variance / hidden_size + epsilon);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll unroll_factor
|
||||
for (int idx = threadIdx.x, cnt = 0; idx < hidden_size; idx += blockDim.x, cnt++) {
|
||||
int id = row_offset + idx;
|
||||
input[id] = ((scalar_t) (x_local[cnt] * s_variance)) * weight[idx];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#define DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT(DATA_SIZE, TYPE, NAME, ...) \
|
||||
if (DATA_SIZE == 2) { \
|
||||
switch (TYPE) { \
|
||||
case at::ScalarType::Half: { \
|
||||
using scalar_t = at::Half; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case at::ScalarType::BFloat16: { \
|
||||
using scalar_t = at::BFloat16; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
||||
} \
|
||||
} else { \
|
||||
switch (TYPE) { \
|
||||
case at::ScalarType::Float: { \
|
||||
using scalar_t = float; \
|
||||
general_##__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
default: \
|
||||
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
||||
} \
|
||||
} \
|
||||
|
||||
|
||||
void rms_layernorm(
|
||||
torch::Tensor& out, // [..., hidden_size]
|
||||
torch::Tensor& input, // [..., hidden_size]
|
||||
torch::Tensor& weight, // [hidden_size]
|
||||
float epsilon) {
|
||||
int hidden_size = input.size(-1);
|
||||
int num_tokens = input.numel() / hidden_size;
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(hidden_size, 1024));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
if (num_tokens >= 512) {
|
||||
if (input.scalar_type() == at::ScalarType::Float) {
|
||||
RMSNORM_LAUNCHER(8, hidden_size / 8);
|
||||
} else {
|
||||
RMSNORM_LAUNCHER(4, hidden_size / 8);
|
||||
}
|
||||
} else {
|
||||
int unroll_factor = (hidden_size + block.x - 1) / block.x;
|
||||
if (input.scalar_type() != at::ScalarType::Float) {
|
||||
block.x = std::min(hidden_size / 2, 1024);
|
||||
unroll_factor = (hidden_size / 2 + block.x - 1) / block.x;
|
||||
}
|
||||
switch (unroll_factor) {
|
||||
case 1:
|
||||
RMSNORM_LAUNCHER(1, block);
|
||||
break;
|
||||
case 2:
|
||||
RMSNORM_LAUNCHER(2, block);
|
||||
break;
|
||||
case 3:
|
||||
RMSNORM_LAUNCHER(3, block);
|
||||
break;
|
||||
case 4:
|
||||
RMSNORM_LAUNCHER(4, block);
|
||||
break;
|
||||
case 8:
|
||||
RMSNORM_LAUNCHER(8, block);
|
||||
break;
|
||||
default:
|
||||
AT_ERROR("unroll_factor must be 1, 2, 4 or 8");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void fused_add_rms_layernorm(
|
||||
torch::Tensor& input, // [..., hidden_size]
|
||||
torch::Tensor& residual, // [..., hidden_size]
|
||||
torch::Tensor& weight, // [hidden_size]
|
||||
float epsilon) {
|
||||
int hidden_size = input.size(-1);
|
||||
int num_tokens = input.numel() / hidden_size;
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(hidden_size, 1024));
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
if (num_tokens >= 512) {
|
||||
if (input.scalar_type() == at::ScalarType::Float) {
|
||||
FUSED_ADD_RMSNORM_LAUNCHER(8, hidden_size / 8);
|
||||
} else {
|
||||
FUSED_ADD_RMSNORM_LAUNCHER(4, hidden_size / 8);
|
||||
}
|
||||
} else {
|
||||
int unroll_factor = (hidden_size + block.x - 1) / block.x;
|
||||
if (input.scalar_type() != at::ScalarType::Float) {
|
||||
block.x = std::min(hidden_size / 2, 1024);
|
||||
unroll_factor = (hidden_size / 2 + block.x - 1) / block.x;
|
||||
}
|
||||
switch (unroll_factor) {
|
||||
case 1:
|
||||
FUSED_ADD_RMSNORM_LAUNCHER(1, block);
|
||||
break;
|
||||
case 2:
|
||||
FUSED_ADD_RMSNORM_LAUNCHER(2, block);
|
||||
break;
|
||||
case 3:
|
||||
FUSED_ADD_RMSNORM_LAUNCHER(3, block);
|
||||
break;
|
||||
case 4:
|
||||
FUSED_ADD_RMSNORM_LAUNCHER(4, block);
|
||||
break;
|
||||
case 8:
|
||||
FUSED_ADD_RMSNORM_LAUNCHER(8, block);
|
||||
break;
|
||||
default:
|
||||
AT_ERROR("unroll_factor must be 1, 2, 4 or 8");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#undef DISPATCH_RMSNORM_FLOAT_HALF_AND_BFLOAT
|
Reference in New Issue
Block a user