mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-12 12:47:21 +00:00
[Inference/Refactor] Refactor compilation mechanism and unified multi hw (#5613)
* refactor compilation mechanism and unified multi hw * fix file path bug * add init.py to make pybind a module to avoid relative path error caused by softlink * delete duplicated micros * fix micros bug in gcc
This commit is contained in:
78
extensions/csrc/kernel/cuda/utils/gpu_launch_config.h
Normal file
78
extensions/csrc/kernel/cuda/utils/gpu_launch_config.h
Normal file
@@ -0,0 +1,78 @@
|
||||
#pragma once
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include "nvgpu_dev_info.h"
|
||||
|
||||
namespace colossalAI {
|
||||
namespace cuda {
|
||||
namespace utils {
|
||||
|
||||
struct GPULaunchConfig {
|
||||
dim3 block{1, 1, 1};
|
||||
dim3 grid{1, 1, 1};
|
||||
};
|
||||
|
||||
static GPULaunchConfig GetGPULaunchConfig1D(const NVGPUDevInfo& dev_info,
|
||||
int64_t numel, int64_t vec_size) {
|
||||
const int64_t max_threads_per_block = dev_info.GetMaxThreadsPerBlock();
|
||||
const int64_t max_blocks_per_grid = dev_info.GetMaxGridDims()[0];
|
||||
const int64_t kMinimumSize = 64;
|
||||
const int64_t kMaximumSize = 512;
|
||||
int64_t active_threads = (numel + vec_size - 1) / vec_size;
|
||||
int64_t sm_num = dev_info.GetMultiProcessorCount();
|
||||
|
||||
// Note(LiuYang): expected threads should be in [64, 128, 256, 512] generally
|
||||
int64_t expected_threads_per_block = kMaximumSize;
|
||||
|
||||
auto RoundUpToPowerOfTwo = [](int64_t x) {
|
||||
bool is_power_of_two = false;
|
||||
int64_t ret = 1;
|
||||
int64_t y = x;
|
||||
while (y > 0) {
|
||||
is_power_of_two = ((ret ^ x) == 0);
|
||||
y = (x >> 1);
|
||||
ret = (ret << 1);
|
||||
if (y > 0) is_power_of_two = false;
|
||||
}
|
||||
if (is_power_of_two) return x;
|
||||
return ret;
|
||||
};
|
||||
|
||||
if ((active_threads / (sm_num << 1)) < max_threads_per_block) {
|
||||
expected_threads_per_block =
|
||||
RoundUpToPowerOfTwo(active_threads / (sm_num << 1));
|
||||
} else if ((active_threads / (sm_num << 2)) < max_threads_per_block) {
|
||||
expected_threads_per_block =
|
||||
RoundUpToPowerOfTwo(active_threads / (sm_num << 2));
|
||||
}
|
||||
|
||||
expected_threads_per_block =
|
||||
std::max(expected_threads_per_block, kMinimumSize);
|
||||
int64_t expect_block_per_grid =
|
||||
((active_threads + expected_threads_per_block - 1) /
|
||||
expected_threads_per_block);
|
||||
|
||||
if (expect_block_per_grid > max_blocks_per_grid) {
|
||||
expect_block_per_grid = max_blocks_per_grid;
|
||||
expected_threads_per_block =
|
||||
(active_threads + expect_block_per_grid - 1) / expect_block_per_grid;
|
||||
if (expected_threads_per_block > max_threads_per_block)
|
||||
throw std::invalid_argument(
|
||||
"Threads required for current input exceed for current GPU!");
|
||||
expected_threads_per_block =
|
||||
RoundUpToPowerOfTwo(expected_threads_per_block);
|
||||
expect_block_per_grid = ((active_threads + expected_threads_per_block - 1) /
|
||||
expected_threads_per_block);
|
||||
}
|
||||
|
||||
GPULaunchConfig config;
|
||||
config.block.x = expected_threads_per_block;
|
||||
config.grid.x = expect_block_per_grid;
|
||||
return config;
|
||||
}
|
||||
|
||||
} // namespace utils
|
||||
} // namespace cuda
|
||||
} // namespace colossalAI
|
18
extensions/csrc/kernel/cuda/utils/micros.h
Normal file
18
extensions/csrc/kernel/cuda/utils/micros.h
Normal file
@@ -0,0 +1,18 @@
|
||||
#pragma once
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <exception>
|
||||
|
||||
#define CUDA_CHECK(func) \
|
||||
{ \
|
||||
auto status = func; \
|
||||
if (status != cudaSuccess) { \
|
||||
throw std::runtime_error(cudaGetErrorString(status)); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define HOST __host__
|
||||
#define DEVICE __device__
|
||||
#define HOSTDEVICE __host__ __device__
|
60
extensions/csrc/kernel/cuda/utils/nvgpu_dev_info.h
Normal file
60
extensions/csrc/kernel/cuda/utils/nvgpu_dev_info.h
Normal file
@@ -0,0 +1,60 @@
|
||||
#pragma once
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "micros.h"
|
||||
|
||||
namespace colossalAI {
|
||||
namespace cuda {
|
||||
namespace utils {
|
||||
|
||||
class NVGPUDevInfo {
|
||||
public:
|
||||
explicit NVGPUDevInfo(int device_num) : device_num_(device_num) {
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop_, device_num));
|
||||
}
|
||||
|
||||
std::array<int, 3> GetMaxGridDims() const {
|
||||
std::array<int, 3> ret;
|
||||
ret[0] = prop_.maxGridSize[0];
|
||||
ret[1] = prop_.maxGridSize[1];
|
||||
ret[2] = prop_.maxGridSize[2];
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::array<int, 3> GetMaxBlockDims() const {
|
||||
std::array<int, 3> ret;
|
||||
ret[0] = prop_.maxThreadsDim[0];
|
||||
ret[1] = prop_.maxThreadsDim[1];
|
||||
ret[2] = prop_.maxThreadsDim[2];
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::array<int, 2> GetCapability() const {
|
||||
std::array<int, 2> ret;
|
||||
ret[0] = prop_.major;
|
||||
ret[1] = prop_.minor;
|
||||
return ret;
|
||||
}
|
||||
|
||||
int GetMultiProcessorCount() const { return prop_.multiProcessorCount; }
|
||||
|
||||
int GetMaxThreadsPerMultiProcessor() const {
|
||||
return prop_.maxThreadsPerMultiProcessor;
|
||||
}
|
||||
|
||||
int GetMaxThreadsPerBlock() const { return prop_.maxThreadsPerBlock; }
|
||||
|
||||
private:
|
||||
int device_num_;
|
||||
cudaDeviceProp prop_;
|
||||
};
|
||||
|
||||
} // namespace utils
|
||||
} // namespace cuda
|
||||
} // namespace colossalAI
|
60
extensions/csrc/kernel/cuda/utils/vec_copy.h
Normal file
60
extensions/csrc/kernel/cuda/utils/vec_copy.h
Normal file
@@ -0,0 +1,60 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cuda_fp16.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "common/vec_type_traits.h"
|
||||
#include "funcs/cast_functor.h"
|
||||
|
||||
namespace colossalAI {
|
||||
namespace cuda {
|
||||
namespace utils {
|
||||
|
||||
template <typename T, int VecSize>
|
||||
__device__ __inline__ void copy_vector(T *dst, const T *src) {
|
||||
using VT = typename common::VecTypeTrait<T, VecSize>::Type;
|
||||
// Note(LiuYang): Here static_cast can't be used for cast between two pointer
|
||||
*(reinterpret_cast<VT *>(dst)) = *(reinterpret_cast<const VT *>(src));
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ __inline__ void copy_vector<float, 8>(float *dst, const float *src) {
|
||||
// Since the maximum memory alignment length is 128 bits, we choose float4
|
||||
// here.
|
||||
*(reinterpret_cast<float4 *>(dst)) = *(reinterpret_cast<const float4 *>(src));
|
||||
*(reinterpret_cast<float4 *>(dst + 4)) =
|
||||
*(reinterpret_cast<const float4 *>(src + 4));
|
||||
}
|
||||
|
||||
template <typename T, int VecSize>
|
||||
__device__ __inline__ void copy_zero_vector(T *dst) {
|
||||
using VT = typename common::VecTypeTrait<T, VecSize>::Type;
|
||||
*(reinterpret_cast<VT *>(dst)) = funcs::CastFunctor<float, VT>()(0.0f);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
int get_vec_size(const torch::Tensor &tensor) {
|
||||
uint64_t address = reinterpret_cast<uint64_t>(tensor.data_ptr<T>());
|
||||
const int max_aligned_size = 128;
|
||||
const int dtype_size = sizeof(T) * 8;
|
||||
|
||||
const int vec_size = max_aligned_size / sizeof(T) / 8;
|
||||
|
||||
// Note(LiuYang): Performance of situation of which
|
||||
// vec_size equals to 8 need to be profiled in the future
|
||||
// if (address % (dtype_size * 8) == 0) {
|
||||
// return std::min(8, vec_size);
|
||||
// }
|
||||
if (address % (dtype_size * 4) == 0) {
|
||||
return std::min(4, vec_size);
|
||||
} else if (address % (dtype_size * 2) == 0) {
|
||||
return std::min(2, vec_size);
|
||||
} else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace utils
|
||||
} // namespace cuda
|
||||
} // namespace colossalAI
|
Reference in New Issue
Block a user