[Inference/Refactor] Refactor compilation mechanism and unified multi hw (#5613)

* refactor compilation mechanism and unified multi hw

* fix file path bug

* add init.py to make pybind a module to avoid relative path error caused by softlink

* delete duplicated micros

* fix micros bug in gcc
This commit is contained in:
傅剑寒
2024-04-24 14:17:54 +08:00
committed by GitHub
parent 04863a9b14
commit 279300dc5f
64 changed files with 345 additions and 310 deletions

View File

@@ -0,0 +1,14 @@
from .flash_attention_dao_cuda import FlashAttentionDaoCudaExtension
from .flash_attention_npu import FlashAttentionNpuExtension
from .flash_attention_sdpa_cuda import FlashAttentionSdpaCudaExtension
try:
# TODO: remove this after updating openmoe example
import flash_attention # noqa
HAS_FLASH_ATTN = True
except:
HAS_FLASH_ATTN = False
__all__ = ["FlashAttentionDaoCudaExtension", "FlashAttentionSdpaCudaExtension", "FlashAttentionNpuExtension"]

View File

@@ -0,0 +1,96 @@
from ...base_extension import _Extension
class FlashAttentionDaoCudaExtension(_Extension):
def __init__(self):
super().__init__(name="flash_attention_dao_cuda", support_aot=False, support_jit=False, priority=10)
def is_available(self) -> bool:
# cuda extension can only be built if cuda is available
try:
import torch
from flash_attn import flash_attn_func, flash_attn_varlen_kvpacked_func # noqa
from flash_attn.bert_padding import index_first_axis, pad_input # noqa
cuda_available = torch.cuda.is_available()
except:
cuda_available = False
return cuda_available
def assert_compatible(self) -> bool:
pass
def build_aot(self) -> None:
raise NotImplementedError(
"We rely on the third-party flash-attn library for flash attention (https://github.com/Dao-AILab/flash-attention). Please install flash-attn via 'pip install flash-attn --no-build-isolation'."
)
def build_jit(self) -> None:
raise NotImplementedError(
"We rely on the third-party flash-attn library for flash attention (https://github.com/Dao-AILab/flash-attention). Please install flash-attn via 'pip install flash-attn --no-build-isolation'"
)
def load(self):
from typing import Optional
import torch
from einops import rearrange
from flash_attn import flash_attn_func, flash_attn_varlen_kvpacked_func
from flash_attn.bert_padding import index_first_axis, pad_input
def _unpad_input(hidden_states: torch.Tensor, indices: torch.Tensor):
return index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices)
def flash_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
dropout_p: float = 0.0,
scale: Optional[float] = None,
attention_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
q_indices: Optional[torch.Tensor] = None,
kv_indices: Optional[torch.Tensor] = None,
):
# [B, N, S, D] -> [B, S, N, D]
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
b, s_q = q.shape[:2]
if cu_seqlens_q is not None:
# padded / padded causal
# unpad input: [B, S, N, D] -> [T, N, D]
q = _unpad_input(q, q_indices)
kv = _unpad_input(torch.stack(tensors=(k, v), dim=2), kv_indices)
attn_output = flash_attn_varlen_kvpacked_func(
q,
kv,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
)
# pad output: [T, N, D] -> [B, S, N, D]
attn_output = pad_input(attn_output, q_indices, b, s_q)
else:
# causal / no attn mask
attn_output = flash_attn_func(
q,
k,
v,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
)
# [B, S, N, D] -> [B, N, S, D]
return attn_output.transpose(1, 2)
return flash_attention

View File

@@ -0,0 +1,62 @@
from ...base_extension import _Extension
class FlashAttentionNpuExtension(_Extension):
def __init__(self):
super().__init__(name="flash_attention_npu", support_aot=False, support_jit=False)
def is_available(self) -> bool:
try:
import torch_npu
return hasattr(torch_npu, "npu_fusion_attention")
except:
return False
def assert_compatible(self) -> bool:
pass
def build_aot(self) -> None:
raise NotImplementedError(
"Flash Attention NPU does not require ahead-of-time compilation. Please use it by installing torch_npu."
)
def build_jit(self) -> None:
raise NotImplementedError(
"Flash Attention NPU does not require just-in-time compilation. Please use it by installing torch_npu."
)
def load(self):
from typing import Optional
import torch
import torch_npu
def flash_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
dropout_p: float = 0.0,
scale: Optional[float] = None,
attention_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
q_indices: Optional[torch.Tensor] = None,
kv_indices: Optional[torch.Tensor] = None,
):
num_heads = q.size(1)
return torch_npu.npu_fusion_attention(
q,
k,
v,
num_heads,
"BNSD",
atten_mask=attention_mask.bool(),
scale=scale,
keep_prob=1 - dropout_p,
)[0]
return flash_attention

View File

@@ -0,0 +1,56 @@
from ...base_extension import _Extension
class FlashAttentionSdpaCudaExtension(_Extension):
def __init__(self):
super().__init__(name="flash_attention_sdpa_cuda", support_aot=False, support_jit=False)
def is_available(self) -> bool:
# cuda extension can only be built if cuda is available
try:
import torch
cuda_available = torch.cuda.is_available()
except:
cuda_available = False
return cuda_available
def assert_compatible(self) -> bool:
pass
def build_aot(self) -> None:
raise NotImplementedError("Flash attention SDPA does not require ahead-of-time compilation.")
def build_jit(self) -> None:
raise NotImplementedError("Flash attention SDPA does not require just-in-time compilation.")
def load(self):
from typing import Optional
import torch
def flash_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
dropout_p: float = 0.0,
scale: Optional[float] = None,
attention_mask: Optional[torch.Tensor] = None,
is_causal: bool = False,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
q_indices: Optional[torch.Tensor] = None,
kv_indices: Optional[torch.Tensor] = None,
):
return torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=attention_mask,
dropout_p=dropout_p,
scale=scale,
)
return flash_attention