[Inference/Refactor] Refactor compilation mechanism and unified multi hw (#5613)

* refactor compilation mechanism and unified multi hw

* fix file path bug

* add init.py to make pybind a module to avoid relative path error caused by softlink

* delete duplicated micros

* fix micros bug in gcc
This commit is contained in:
傅剑寒
2024-04-24 14:17:54 +08:00
committed by GitHub
parent 04863a9b14
commit 279300dc5f
64 changed files with 345 additions and 310 deletions

View File

@@ -0,0 +1,3 @@
from .fused_optimizer_cuda import FusedOptimizerCudaExtension
__all__ = ["FusedOptimizerCudaExtension"]

View File

@@ -0,0 +1,29 @@
from ...cuda_extension import _CudaExtension
from ...utils import get_cuda_cc_flag
class FusedOptimizerCudaExtension(_CudaExtension):
def __init__(self):
super().__init__(name="fused_optim_cuda")
def sources_files(self):
ret = [
self.csrc_abs_path(fname)
for fname in [
"kernel/cuda/multi_tensor_sgd_kernel.cu",
"kernel/cuda/multi_tensor_scale_kernel.cu",
"kernel/cuda/multi_tensor_adam_kernel.cu",
"kernel/cuda/multi_tensor_l2norm_kernel.cu",
"kernel/cuda/multi_tensor_lamb_kernel.cu",
]
] + [self.pybind_abs_path("optimizer/optimizer.cpp")]
return ret
def cxx_flags(self):
version_dependent_macros = ["-DVERSION_GE_1_1", "-DVERSION_GE_1_3", "-DVERSION_GE_1_5"]
return ["-O3"] + version_dependent_macros
def nvcc_flags(self):
extra_cuda_flags = ["-lineinfo"]
extra_cuda_flags.extend(get_cuda_cc_flag())
return ["-O3", "--use_fast_math"] + extra_cuda_flags + super().nvcc_flags()

View File

@@ -0,0 +1,49 @@
// modified from
// https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_adam.cu
#include <torch/extension.h>
void multi_tensor_scale_cuda(int chunk_size, at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
float scale);
void multi_tensor_sgd_cuda(int chunk_size, at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
float wd, float momentum, float dampening, float lr,
bool nesterov, bool first_run,
bool wd_after_momentum, float scale);
void multi_tensor_adam_cuda(int chunk_size, at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
const float lr, const float beta1,
const float beta2, const float epsilon,
const int step, const int mode,
const int bias_correction, const float weight_decay,
const float div_scale);
void multi_tensor_lamb_cuda(int chunk_size, at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
const float lr, const float beta1,
const float beta2, const float epsilon,
const int step, const int bias_correction,
const float weight_decay, const int grad_averaging,
const int mode, at::Tensor global_grad_norm,
const float max_grad_norm,
at::optional<bool> use_nvlamb_python);
std::tuple<at::Tensor, at::Tensor> multi_tensor_l2norm_cuda(
int chunk_size, at::Tensor noop_flag,
std::vector<std::vector<at::Tensor>> tensor_lists,
at::optional<bool> per_tensor_python);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("multi_tensor_scale", &multi_tensor_scale_cuda,
"Fused overflow check + scale for a list of contiguous tensors");
m.def("multi_tensor_sgd", &multi_tensor_sgd_cuda,
"Fused SGD optimizer for list of contiguous tensors");
m.def("multi_tensor_adam", &multi_tensor_adam_cuda,
"Compute and apply gradient update to parameters for Adam optimizer");
m.def("multi_tensor_lamb", &multi_tensor_lamb_cuda,
"Computes and apply update for LAMB optimizer");
m.def("multi_tensor_l2norm", &multi_tensor_l2norm_cuda,
"Computes L2 norm for a list of contiguous tensors");
}