[example] update gpt readme with performance (#2206)

This commit is contained in:
Jiarui Fang
2022-12-27 17:39:53 +08:00
committed by GitHub
parent 1cb532ffec
commit 29868a9ec1
3 changed files with 47 additions and 10 deletions

View File

@@ -53,3 +53,36 @@ The `train_gpt_demo.py` provides three distributed plans, you can choose the pla
- ZeRO2 (Colossal-AI)
- Pytorch DDP
- Pytorch ZeRO
## Performance
Testbed: a cluster of 8xA100 (80GB) and 1xAMD EPYC 7543 32-Core Processor (512 GB). GPUs are connected via PCI-e.
ColossalAI version 0.1.13.
How dose Batch Size affect the efficency.
| model | #GPU | policy | TP |batch | Tflops |
| ---------- | --------- |--------- |--------- |--------- |--------- |
| gpt2_10b | 2 | cpu | 1 | 32 | 122.046 |
| gpt2_10b | 2 | cpu | 1 | 16 | 82.649 |
| gpt2_10b | 2 | cpu | 1 | 8 | 61.354 |
How dose the Placement Policy affect the efficency.
| model | #GPU | policy | TP |batch | Tflops |
| ---------- | --------- |--------- |--------- |--------- |--------- |
| gpt2_10b | 4 | auto | 1 | 8 | 88.657 |
| gpt2_10b | 4 | cuda | 1 | 8 | OOM |
| gpt2_10b | 4 | cpu | 1 | 8 | 61.354 |
| gpt2_10b | 4 | const | 1 | 8 | 82.137 |
How dose the Tensor Parallel Degree affect the efficency.
| model | #GPU | policy | TP |batch | Tflops |
| ---------- | --------- |--------- |--------- |--------- |--------- |
| gpt2_10b | 4 | auto | 1 | 8 | 88.657 |
| gpt2_10b | 4 | auto | 2 | 8 | 56.687 |
| gpt2_10b | 4 | auto | 4 | 8 | 29.019 |
| gpt2_10b | 4 | auto | 4 | 64 | 50.411 |