Optimized the execution interval time between cuda kernels caused by view and memcopy (#5390)

* opt_view_and_memcopy

* fix bugs in ci

* fix ci bugs

* update benchmark scripts

* fix ci bugs
This commit is contained in:
yuehuayingxueluo
2024-02-21 13:23:57 +08:00
committed by GitHub
parent 730103819d
commit 2a718c8be8
8 changed files with 141 additions and 55 deletions

View File

@@ -2,7 +2,6 @@
from typing import List, Optional, Tuple
import torch
from torch.nn import Parameter
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaConfig,
@@ -82,19 +81,21 @@ def llama_model_forward(
if batch.is_prompts:
output_tensor = torch.zeros(
(sequence_lengths.sum().item(), batch.num_heads, batch.head_dim), dtype=batch.dtype, device=batch.device
(sequence_lengths.sum().item(), batch.num_heads * batch.head_dim), dtype=batch.dtype, device=batch.device
)
else:
output_tensor = torch.zeros(
(batch_size, batch.num_heads, batch.head_dim), dtype=batch.dtype, device=batch.device
(batch_size, batch.num_heads * batch.head_dim), dtype=batch.dtype, device=batch.device
)
sm_scale = 1.0 / (batch.head_dim**0.5)
norm_output = torch.empty_like(hidden_states)
residual = None
for layer_id, decoder_layer in enumerate(self.layers):
hidden_states = decoder_layer(
hidden_states, residual = decoder_layer(
hidden_states,
residual=residual,
block_tables=block_tables,
k_cache=k_caches[layer_id],
v_cache=v_caches[layer_id],
@@ -111,8 +112,9 @@ def llama_model_forward(
if batch.is_prompts:
last_token_indexs = sequence_lengths.cumsum(dim=-1)
hidden_states = hidden_states[last_token_indexs - 1].contiguous()
residual = residual[last_token_indexs - 1].contiguous()
norm_output = torch.empty_like(hidden_states)
hidden_states = self.norm(hidden_states, norm_output)
hidden_states, _ = self.norm(hidden_states, norm_output, residual)
return hidden_states
@@ -120,6 +122,7 @@ def llama_model_forward(
def llama_decoder_layer_forward(
self: LlamaDecoderLayer,
hidden_states: torch.Tensor,
residual: torch.Tensor,
block_tables: torch.Tensor = None,
k_cache: torch.Tensor = None,
v_cache: torch.Tensor = None,
@@ -136,6 +139,7 @@ def llama_decoder_layer_forward(
Args:
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim].
residual (torch.Tensor): shape [token_num, embed_dim], used to be added to hidden_states in out_proj.
block_tables (torch.Tensor, optional): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
storing mapping of token_position_id -> block_id. Defaults to None.
k_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
@@ -151,12 +155,10 @@ def llama_decoder_layer_forward(
sm_scale (int, optional): Used for flash attention. Defaults to None.
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states, norm_output)
hidden_states, residual = self.input_layernorm(hidden_states, norm_output, residual)
# Self Attention
hidden_states = self.self_attn(
hidden_states=hidden_states,
residual=residual,
block_tables=block_tables,
k_cache=k_cache,
v_cache=v_cache,
@@ -170,11 +172,10 @@ def llama_decoder_layer_forward(
)
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states, norm_output)
hidden_states = self.mlp(hidden_states, residual)
hidden_states, residual = self.post_attention_layernorm(hidden_states, norm_output, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states
return hidden_states, residual
class NopadLlamaAttention(LlamaAttention):
@@ -198,16 +199,18 @@ class NopadLlamaAttention(LlamaAttention):
attn_oproj_w (torch.Tensor, optional): The transposed o_proj weight. Defaults to None.
"""
super().__init__(config, layer_idx)
self.q_proj.weight = Parameter(attn_qproj_w, requires_grad=False)
self.k_proj.weight = Parameter(attn_kproj_w, requires_grad=False)
self.v_proj.weight = Parameter(attn_vproj_w, requires_grad=False)
self.o_proj.weight = Parameter(attn_oproj_w, requires_grad=False)
self.q_proj_weight = attn_qproj_w
self.k_proj_weight = attn_kproj_w
self.v_proj_weight = attn_vproj_w
self.o_proj_weight = attn_oproj_w
if self.num_heads == self.num_key_value_heads:
qkv_weight_list = [self.q_proj.weight, self.k_proj.weight, self.v_proj.weight]
qkv_weight_list = [self.q_proj_weight, self.k_proj_weight, self.v_proj_weight]
self.qkv_weight = torch.stack(qkv_weight_list, dim=0)
self.q_proj = None
self.k_proj = None
self.v_proj = None
self.q_proj = None
self.k_proj = None
self.v_proj = None
@staticmethod
def from_native_module(module: LlamaAttention, *args, **kwargs) -> LlamaAttention:
@@ -239,7 +242,6 @@ class NopadLlamaAttention(LlamaAttention):
def forward(
self,
hidden_states: torch.Tensor,
residual: torch.Tensor,
block_tables: torch.Tensor = None,
k_cache: torch.Tensor = None,
v_cache: torch.Tensor = None,
@@ -254,7 +256,6 @@ class NopadLlamaAttention(LlamaAttention):
"""
Args:
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim].
residual (torch.Tensor): shape [token_num, embed_dim], used to be added to hidden_states in out_proj.
block_tables (torch.Tensor, optional): A 2D tensor of shape [batch_size, max_blocks_per_sequence],
storing mapping of token_position_id -> block_id. Defaults to None.
k_cache (torch.Tensor, optional): It holds the GPU memory for the key cache. Defaults to None.
@@ -270,9 +271,9 @@ class NopadLlamaAttention(LlamaAttention):
"""
if self.num_heads != self.num_key_value_heads:
query_states = torch.mm(hidden_states, self.q_proj.weight).view(-1, self.num_heads, self.head_dim)
key_states = torch.mm(hidden_states, self.k_proj.weight).view(-1, self.num_key_value_heads, self.head_dim)
value_states = torch.mm(hidden_states, self.v_proj.weight).view(-1, self.num_key_value_heads, self.head_dim)
query_states = torch.mm(hidden_states, self.q_proj_weight).view(-1, self.num_heads, self.head_dim)
key_states = torch.mm(hidden_states, self.k_proj_weight).view(-1, self.num_key_value_heads, self.head_dim)
value_states = torch.mm(hidden_states, self.v_proj_weight).view(-1, self.num_key_value_heads, self.head_dim)
else:
# fused qkv
token_nums = hidden_states.size(0)
@@ -324,8 +325,7 @@ class NopadLlamaAttention(LlamaAttention):
sm_scale=sm_scale,
)
attn_output = attn_output.view(-1, self.hidden_size)
attn_output = torch.addmm(residual, attn_output, self.o_proj.weight)
attn_output = torch.mm(attn_output, self.o_proj_weight)
return attn_output
@@ -348,10 +348,11 @@ class NopadLlamaMLP(LlamaMLP):
mlp_dproj_w (torch.Tensor, optional): The transposed down_proj weight. Defaults to None.
"""
super().__init__(config)
self.gate_up_weight = Parameter(torch.stack([mlp_gproj_w, mlp_uproj_w], dim=0), requires_grad=False)
self.down_proj.weight = Parameter(mlp_dproj_w, requires_grad=False)
self.gate_up_weight = torch.stack([mlp_gproj_w, mlp_uproj_w], dim=0)
self.down_proj_weight = mlp_dproj_w
self.gate_proj = None
self.up_proj = None
self.down_proj = None
@staticmethod
def from_native_module(module: LlamaMLP, *args, **kwargs) -> LlamaMLP:
@@ -375,14 +376,13 @@ class NopadLlamaMLP(LlamaMLP):
return mlp_layer
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Args:
hidden_states (torch.Tensor): input to the layer of shape [token_num, embed_dim].
residual (torch.Tensor): shape [token_num, embed_dim], used to be added to hidden_states in down_proj.
"""
hidden_states = hidden_states.expand(2, -1, -1)
gate_up_proj_out = torch.bmm(hidden_states, self.gate_up_weight)
act_out = torch.nn.functional.silu(gate_up_proj_out[0], inplace=True)
tmp_out = act_out * gate_up_proj_out[1]
return torch.addmm(residual, tmp_out, self.down_proj.weight)
return torch.mm(tmp_out, self.down_proj_weight)