fix bugs related to processing padding mask

This commit is contained in:
yuehuayingxueluo
2024-01-09 14:29:45 +08:00
committed by FrankLeeeee
parent e545a871b8
commit 2a73e828eb
2 changed files with 26 additions and 139 deletions

View File

@@ -196,6 +196,7 @@ class PagedAttention:
v_cache: torch.Tensor,
context_lengths: torch.Tensor, # [num_seqs]
block_tables: torch.Tensor, # [num_seqs,max_blocks_per_sequence]
attn_mask: torch.Tensor = None, # [bsz, input_lengths + output_lengths]
):
# Firt, do shape verification
bsz, seq_len, num_heads, head_size = q.shape
@@ -205,8 +206,6 @@ class PagedAttention:
block_size = k_cache.shape[-1]
assert q.shape[0] == k.shape[0] == v.shape[0] == block_tables.shape[0]
block_tables.shape[-1] * block_size
shape = (bsz, seq_len, num_heads, head_size)
input_shape = shape[:2]
# Copy kv to memory(rotary embedded)
copy_to_cache(k, k_cache, lengths=context_lengths, block_tables=block_tables)
@@ -217,8 +216,16 @@ class PagedAttention:
v = PagedAttention.repeat_kv(v.transpose(1, 2), num_kv_groups)
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(head_size)
attn_mask = AttentionMaskConverter._make_causal_mask(input_shape, q.dtype, q.device, past_key_values_length=0)
attn_mask = attn_mask + PagedAttention.generate_padding_mask(context_lengths, seq_len)
if attn_mask is not None:
padding_mask = AttentionMaskConverter._expand_mask(attn_mask, q.dtype, seq_len)
attn_mask = AttentionMaskConverter._make_causal_mask(
(bsz, seq_len), q.dtype, q.device, past_key_values_length=seq_len - seq_len
)
if padding_mask is not None:
attn_mask = attn_mask.masked_fill(padding_mask.bool(), torch.finfo(q.dtype).min)
if attn_weights.size() != (bsz, num_heads, seq_len, seq_len):
raise ValueError(f"Got wrong attn_weights, should be in shape {(bsz,num_heads,seq_len,seq_len)}.")
@@ -246,27 +253,17 @@ class PagedAttention:
v_cache: torch.Tensor,
lengths: torch.Tensor, # [num_seqs]: input_lengths + output_lengths
block_tables: torch.Tensor, # [num_seqs,max_blocks_per_sequence]
attn_mask: torch.Tensor = None, # [bsz, input_lengths + output_lengths]
):
# Firt, do shape verification.
bsz, _, num_heads, head_size = q.shape
bsz, q_length, num_heads, head_size = q.shape
num_kv_heads = k.shape[-2]
assert num_heads % num_kv_heads == 0, "num_kv_heads should be divisible by num_heads"
num_kv_groups = num_heads // num_kv_heads
block_size = k_cache.shape[-1]
seq_len = max(lengths)
assert q.shape[0] == k.shape[0] == v.shape[0] == block_tables.shape[0]
block_tables.shape[-1] * block_size
attn_mask = AttentionMaskConverter._make_causal_mask(
q.shape[:2], q.dtype, q.device, past_key_values_length=seq_len - 1
)
attn_mask = attn_mask + PagedAttention.generate_padding_mask(lengths, seq_len).unsqueeze(1).unsqueeze(2)
# cos, sin = self.rotary_emb(v, max_seq_len)
# position_ids = lengths - 1
# position_ids = position_ids.unsqueeze(1)
# query, key = apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=2)
copy_to_cache(k, k_cache, lengths=lengths, block_tables=block_tables, type="decoding")
copy_to_cache(v, v_cache, lengths=lengths, block_tables=block_tables, type="decoding")
@@ -283,8 +280,16 @@ class PagedAttention:
raise ValueError(f"Got wrong attn_weights, should be in shape {(bsz,num_heads,1,seq_len)}.")
if attn_mask is not None:
attn_weights += attn_mask
padding_mask = AttentionMaskConverter._expand_mask(attn_mask, q.dtype, query_length)
attn_mask = AttentionMaskConverter._make_causal_mask(
(bsz, q_length), q.dtype, q.device, past_key_values_length=seq_len - query_length
)
if padding_mask is not None:
attn_mask = attn_mask.masked_fill(padding_mask.bool(), torch.finfo(q.dtype).min)
attn_weights += attn_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
attn_output = torch.matmul(attn_weights, v)