[Inference/NFC] Clean outdated inference tests and deprecated kernels (#5159)

* [inference/nfc] remove outdated inference tests

* remove outdated kernel tests

* remove deprecated triton kernels

* remove imports from deprecated kernels
This commit is contained in:
Yuanheng Zhao
2023-12-05 15:12:57 +08:00
committed by FrankLeeeee
parent 56e75eeb06
commit 2bb92243d4
18 changed files with 0 additions and 2543 deletions

View File

@@ -1,121 +0,0 @@
import importlib.util
import pytest
import torch
import torch.distributed as dist
import transformers
from packaging import version
import colossalai
from colossalai.inference import InferenceEngine
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5")
HAS_LIGHTLLM_KERNEL = True
if importlib.util.find_spec("lightllm") is None:
HAS_LIGHTLLM_KERNEL = False
def data_gen():
input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779, 318, 13779]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
inputs = data_gen()
for k, v in inputs.items():
if torch.is_tensor(v) or "Tensor" in v.__class__.__name__:
new_shape = [1] * v.dim()
new_shape[0] = 16
inputs[k] = v.to("cuda").repeat(*new_shape)
def pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
model = transformers.BloomForCausalLM(
transformers.BloomConfig(vocab_size=20000, hidden_size=512, n_head=4, n_layer=4)
)
engine = InferenceEngine(
tp_size=tp_size,
pp_size=pp_size,
model=model,
max_output_len=max_output_len,
micro_batch_size=micro_batch_size,
)
output = engine.generate(inputs)
if dist.get_rank() == 0:
assert len(output[0]) == max_output_len, f"{len(output)}, {max_output_len}"
@parameterize("tp_size", [1])
@parameterize("pp_size", [2])
@parameterize("max_output_len", [4])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [2])
@parameterize("pp_size", [2])
@parameterize("max_output_len", [4])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_tp_pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [2])
@parameterize("pp_size", [1])
@parameterize("max_output_len", [2])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_tp_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [1])
@parameterize("pp_size", [1])
@parameterize("max_output_len", [2])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_single_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
def check_tp_pp_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_tp_pipeline_inference_test()
def check_tp_or_pp_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_tp_inference_test()
run_pipeline_inference_test()
def check_single_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_single_inference_test
@pytest.mark.skipif(
not CUDA_SUPPORT or not HAS_LIGHTLLM_KERNEL,
reason="kv-cache manager engine requires cuda version to be higher than 11.5",
)
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_pipeline_inference():
spawn(check_tp_pp_inference, nprocs=4)
spawn(check_tp_or_pp_inference, nprocs=2)
spawn(check_single_inference, nprocs=1)
if __name__ == "__main__":
test_pipeline_inference()

View File

@@ -1,129 +0,0 @@
import importlib.util
import pytest
import torch
import torch.distributed as dist
from packaging import version
import colossalai
from colossalai.inference import InferenceEngine
from colossalai.shardformer.modeling.chatglm2_6b.configuration_chatglm import ChatGLMConfig
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5")
HAS_LIGHTLLM_KERNEL = True
if importlib.util.find_spec("lightllm") is None:
HAS_LIGHTLLM_KERNEL = False
def data_gen():
input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779, 318, 13779]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
inputs = data_gen()
for k, v in inputs.items():
if torch.is_tensor(v) or "Tensor" in v.__class__.__name__:
new_shape = [1] * v.dim()
new_shape[0] = 16
inputs[k] = v.to("cuda").repeat(*new_shape)
def pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
chatglm_config = ChatGLMConfig(
num_layers=2,
vocab_size=20000,
use_cache=True,
multi_query_attention=True,
multi_query_group_num=2,
num_attention_heads=8,
hidden_size=1024,
)
model = ChatGLMForConditionalGeneration(chatglm_config)
engine = InferenceEngine(
tp_size=tp_size,
pp_size=pp_size,
model=model,
max_output_len=max_output_len,
micro_batch_size=micro_batch_size,
)
output = engine.generate(inputs)
if dist.get_rank() == 0:
assert len(output[0]) == max_output_len, f"{len(output)}, {max_output_len}"
@parameterize("tp_size", [1])
@parameterize("pp_size", [2])
@parameterize("max_output_len", [4])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [2])
@parameterize("pp_size", [2])
@parameterize("max_output_len", [4])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_tp_pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [2])
@parameterize("pp_size", [1])
@parameterize("max_output_len", [2])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_tp_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [1])
@parameterize("pp_size", [1])
@parameterize("max_output_len", [2])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_single_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
def check_tp_pp_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_tp_pipeline_inference_test()
def check_tp_or_pp_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_tp_inference_test()
run_pipeline_inference_test()
def check_single_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_single_inference_test
@pytest.mark.skipif(
not CUDA_SUPPORT or not HAS_LIGHTLLM_KERNEL,
reason="kv-cache manager engine requires cuda version to be higher than 11.5",
)
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_pipeline_inference():
spawn(check_tp_pp_inference, nprocs=4)
spawn(check_tp_or_pp_inference, nprocs=2)
spawn(check_single_inference, nprocs=1)
if __name__ == "__main__":
test_pipeline_inference()

View File

@@ -1,126 +0,0 @@
import importlib.util
import pytest
import torch
import torch.distributed as dist
import transformers
from packaging import version
import colossalai
from colossalai.inference import InferenceEngine
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5")
import importlib.util
HAS_LIGHTLLM_KERNEL = True
if importlib.util.find_spec("lightllm") is None:
HAS_LIGHTLLM_KERNEL = False
def data_gen():
input_ids = torch.tensor([[15496, 11, 616, 3290, 318, 13779, 318, 13779]], dtype=torch.int64)
attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
inputs = data_gen()
for k, v in inputs.items():
if torch.is_tensor(v) or "Tensor" in v.__class__.__name__:
new_shape = [1] * v.dim()
new_shape[0] = 16
inputs[k] = v.to("cuda").repeat(*new_shape)
def pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
model = transformers.LlamaForCausalLM(
transformers.LlamaConfig(
vocab_size=20000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=4
)
)
engine = InferenceEngine(
tp_size=tp_size,
pp_size=pp_size,
model=model,
max_output_len=max_output_len,
micro_batch_size=micro_batch_size,
)
output = engine.generate(inputs)
if dist.get_rank() == 0:
assert len(output[0]) == max_output_len, f"{len(output)}, {max_output_len}"
@parameterize("tp_size", [1])
@parameterize("pp_size", [2])
@parameterize("max_output_len", [4])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [2])
@parameterize("pp_size", [2])
@parameterize("max_output_len", [4])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_tp_pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [2])
@parameterize("pp_size", [1])
@parameterize("max_output_len", [2])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_tp_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
@parameterize("tp_size", [1])
@parameterize("pp_size", [1])
@parameterize("max_output_len", [2])
@parameterize("micro_batch_size", [1])
@clear_cache_before_run()
def run_single_inference_test(tp_size, pp_size, max_output_len, micro_batch_size):
pipeline_inference_test(tp_size, pp_size, max_output_len, micro_batch_size)
torch.cuda.empty_cache()
def check_tp_pp_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_tp_pipeline_inference_test()
def check_tp_or_pp_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_tp_inference_test()
run_pipeline_inference_test()
def check_single_inference(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_single_inference_test
@pytest.mark.skipif(
not CUDA_SUPPORT or not HAS_LIGHTLLM_KERNEL,
reason="kv-cache manager engine requires cuda version to be higher than 11.5",
)
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_pipeline_inference():
spawn(check_tp_pp_inference, nprocs=4)
spawn(check_tp_or_pp_inference, nprocs=2)
spawn(check_single_inference, nprocs=1)
if __name__ == "__main__":
test_pipeline_inference()

View File

@@ -1,66 +0,0 @@
import os
import pytest
import torch
from packaging import version
from colossalai.inference.kv_cache import MemoryManager
from colossalai.logging import disable_existing_loggers
from colossalai.testing import rerun_if_address_is_in_use, spawn
BATCH_SIZE = 4
INPUT_LEN = 16
OUTPUT_LEN = 8
LAYER_NUM = 4
HEAD_NUM = 32
HEAD_DIM = 128
CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.5")
def create_cache_manager(rank, world_size, port, batch_size, input_len, output_len, layer_num, head_num, head_dim):
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(port)
disable_existing_loggers()
size = batch_size * (input_len + output_len)
kvcache_manager = MemoryManager(size, torch.float16, head_num // world_size, head_dim, layer_num, rank)
key_buffers = kvcache_manager.key_buffer
value_buffers = kvcache_manager.value_buffer
assert len(key_buffers) == len(value_buffers) == layer_num
assert key_buffers[0].shape == value_buffers[0].shape
# required size exceeds the maximum allocated size
invalid_locs = kvcache_manager.alloc_contiguous(size + 1)
assert invalid_locs is None
# for prefill stage, allocation via alloc and alloc_contiguous should be the same
total_token_prefill = batch_size * input_len
prefill_locs = kvcache_manager.alloc(total_token_prefill)
kvcache_manager.free_all()
prefill_locs_contiguous = kvcache_manager.alloc_contiguous(total_token_prefill)[0]
assert torch.equal(prefill_locs, prefill_locs_contiguous)
assert torch.sum(kvcache_manager.mem_state).item() == size - total_token_prefill
kvcache_manager.alloc_contiguous(batch_size)
assert torch.all(kvcache_manager.mem_state[: total_token_prefill + batch_size] == False)
@pytest.mark.skipif(not CUDA_SUPPORT, reason="kv-cache manager engine requires cuda version to be higher than 11.5")
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_cache_manager_dist():
spawn(
create_cache_manager,
4,
batch_size=BATCH_SIZE,
input_len=INPUT_LEN,
output_len=OUTPUT_LEN,
layer_num=LAYER_NUM,
head_num=HEAD_NUM,
head_dim=HEAD_DIM,
)
if __name__ == "__main__":
test_cache_manager_dist()