mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-18 07:31:19 +00:00
[Tensor] add ColoTensor TP1Dcol Embedding (#899)
This commit is contained in:
82
tests/test_tensor/test_embedding_tp.py
Normal file
82
tests/test_tensor/test_embedding_tp.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import torch
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.tensor import ColoTensor
|
||||
|
||||
from functools import partial
|
||||
|
||||
import colossalai
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction
|
||||
|
||||
from _utils import check_equal, replace_parameter_add_grad, broadcast_tensor_chunk
|
||||
|
||||
def run_embedding_tp1d_col_test():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
DEPTH = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
||||
num_embeddings = 12
|
||||
embedding_dim = 32
|
||||
|
||||
local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
||||
|
||||
layer_master = torch.nn.Embedding(num_embeddings, embedding_dim)
|
||||
layer = torch.nn.Embedding(num_embeddings, embedding_dim)
|
||||
|
||||
A_master = torch.tensor((0,3,6,9), device=device)
|
||||
A = broadcast_tensor_chunk(A_master, chunk_size=1)
|
||||
|
||||
W_shape = (num_embeddings, embedding_dim)
|
||||
W_master = torch.randn(W_shape, dtype=dtype, device=device)
|
||||
W = broadcast_tensor_chunk(W_master, chunk_size=1)
|
||||
W.requires_grad = True
|
||||
|
||||
# replace the torch nn.Parameters with ColoTensor
|
||||
sharded_weight = ColoTensor.init_from_torch_tensor(W)
|
||||
parallel_action_list = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Embedding,
|
||||
parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec = TensorSpec(parallel_action_list)
|
||||
sharded_weight.set_spec(spec) # reshard
|
||||
replace_parameter_add_grad(layer, sharded_weight)
|
||||
out = layer(A)
|
||||
|
||||
replace_parameter_add_grad(layer_master, W_master)
|
||||
C_master = layer_master(A_master)
|
||||
C = C_master.clone()
|
||||
|
||||
check_equal(out, C)
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
|
||||
grad = broadcast_tensor_chunk(grad_master, chunk_size=1)
|
||||
out.backward(grad)
|
||||
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
|
||||
W_grad = W_master.grad
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[local_rank]
|
||||
check_equal(W_grad, layer.weight.grad)
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_embedding_tp1d_col_test()
|
||||
|
||||
@pytest.mark.dist
|
||||
@parameterize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_embedding_1d(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_embedding_1d()
|
@@ -47,7 +47,7 @@ def run_linear_tp1d_col_test():
|
||||
sharded_weight = ColoTensor.init_from_torch_tensor(W)
|
||||
sharded_bias = ColoTensor.init_from_torch_tensor(B)
|
||||
parallel_action_list = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec = TensorSpec(parallel_action_list)
|
||||
sharded_weight.set_spec(spec) # reshard
|
||||
@@ -110,7 +110,7 @@ def run_linear_tp1d_row_test():
|
||||
# replace the torch nn.Parameters with ColoTensor
|
||||
sharded_weight = ColoTensor.init_from_torch_tensor(W)
|
||||
parallel_action_list = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec = TensorSpec(parallel_action_list)
|
||||
sharded_weight.set_spec(spec=spec) # reshard
|
||||
@@ -145,7 +145,7 @@ def run_linear_tp1d_row_test():
|
||||
def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
#run_linear_tp1d_row_test()
|
||||
run_linear_tp1d_row_test()
|
||||
run_linear_tp1d_col_test()
|
||||
|
||||
@pytest.mark.dist
|
||||
|
@@ -38,12 +38,12 @@ def run_1d_col_tp():
|
||||
model = model_builder(checkpoint=True)
|
||||
|
||||
parallel_action_list_row = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_row = TensorSpec(parallel_action_list_row)
|
||||
|
||||
parallel_action_list_col = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_col = TensorSpec(parallel_action_list_col)
|
||||
|
||||
@@ -168,7 +168,7 @@ def run_1d_row_tp():
|
||||
model = model_builder(checkpoint=True)
|
||||
|
||||
parallel_action_list = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec = TensorSpec(parallel_action_list)
|
||||
|
||||
|
Reference in New Issue
Block a user