[fx] tested the complete workflow for auto-parallel (#1336)

* [fx] tested the complete workflow for auto-parallel

* polish code

* polish code

* polish code
This commit is contained in:
Frank Lee
2022-07-20 10:45:17 +08:00
committed by GitHub
parent 4631fef8a0
commit 2cc1175c76
4 changed files with 187 additions and 106 deletions

View File

@@ -0,0 +1,77 @@
import colossalai
import torch
import torch.nn as nn
import pytest
import torch.multiprocessing as mp
import torch.distributed as dist
from colossalai.testing import rerun_if_address_is_in_use
from functools import partial
from colossalai.fx import ColoTracer
from colossalai.utils.model.lazy_init_context import LazyInitContext
from colossalai.fx.passes.shard_1d_pass import transformer_mlp_pass
from colossalai.utils import free_port
from colossalai.tensor import ProcessGroup
class MLP(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim)
self.linear2 = torch.nn.Linear(dim, dim)
self.dropout = torch.nn.Dropout(0)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.linear1(x)
x = self.dropout(x)
x = self.relu(x)
x = self.linear2(x)
return x
def run_workflow(world_size):
# initailization
with LazyInitContext() as ctx:
model = MLP(16)
# tracing
tracer = ColoTracer()
graph = tracer.trace(model)
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
# annotate
annotated_gm = transformer_mlp_pass(gm, process_group=ProcessGroup())
annotated_gm.recompile()
# materialization and sharding
ctx.lazy_init_parameters(annotated_gm)
# # check sharding
assert list(model.linear1.weight.shape) == [16 // world_size, 16]
assert list(model.linear1.bias.shape) == [16 // world_size]
assert list(model.linear2.weight.shape) == [16, 16 // world_size]
# test forward to make sure that IR transform will produce the same results
# like how ColoTensor would do it normally
data = torch.rand(4, 16)
non_fx_out = model(data)
fx_out = annotated_gm(data)
assert torch.equal(non_fx_out, fx_out)
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_workflow(world_size)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@rerun_if_address_is_in_use()
def test_complete_workflow(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_complete_workflow(2)

View File

@@ -1,59 +0,0 @@
import torch
import torch.nn as nn
import pytest
import colossalai
from colossalai.fx import ColoTracer
from colossalai.fx.passes.shard_1d_pass import transform_mlp_pass
CONFIG = dict(parallel=dict(tensor=dict(size=2, mode='1d')))
class MLP(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim)
self.linear2 = torch.nn.Linear(dim, dim)
self.linear3 = torch.nn.Linear(dim, dim)
self.linear4 = torch.nn.Linear(dim, dim)
self.dropout = torch.nn.Dropout()
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.linear1(x))
x = self.dropout(self.relu(self.linear2(x)))
x = self.linear3(x)
x = torch.nn.functional.relu(self.linear4(x))
return x
def test_out_acc():
model = MLP(16).cuda()
model.eval()
input_tensor = torch.rand(2, 16).cuda()
output = model(input_tensor)
tracer = ColoTracer()
graph = tracer.trace(model, meta_args={'x': torch.randn((2, 16), device="meta")})
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
splitted_gm = transform_mlp_pass(gm)
new_output = splitted_gm(input_tensor)
assert output.equal(new_output)
def test_linear_acc():
input_tensor = torch.rand(2, 16).cuda()
model = MLP(16).cuda()
tracer = ColoTracer()
graph = tracer.trace(model, meta_args={'x': torch.randn((2, 16), device="meta")})
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
splitted_gm = transform_mlp_pass(gm)
col_shard = True
for node in splitted_gm.graph.nodes:
if node.op == "call_module" and isinstance(node.graph.owning_module.get_submodule(node.target), torch.nn.Linear):
target_module = node.graph.owning_module.get_submodule(node.target)
dim = 0 if col_shard else -1
assert target_module.weight.fx_attr == (dim, "SHARD", "TP", "col_needs_many_outputs")
col_shard = not col_shard
if __name__ == "__main__":
torch.manual_seed(1)
torch.cuda.manual_seed(1)
# colossalai.launch_from_torch(config=CONFIG)
test_out_acc()
test_linear_acc()