[gemini] async grad chunk reduce (all-reduce&reduce-scatter) (#5713)

* [gemini] async grad chunk reduce (all-reduce&reduce-scatter)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [gemini] add test

* [gemini] rename func

* [gemini] update llama benchmark

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [gemini] use tensor counter

* [gemini] change default config in GeminiPlugin and GeminiDDP

* [chore] typo

* [gemini] fix sync issue & add test cases

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
botbw
2024-05-24 10:31:16 +08:00
committed by GitHub
parent 85946d4236
commit 2fc85abf43
11 changed files with 130 additions and 45 deletions

View File

@@ -34,7 +34,8 @@ def check_equal(param, param_cp):
@parameterize("init_device", [None, torch.device("cpu")])
@parameterize("keep_gathered", [True, False])
@parameterize("pin_memory", [True, False])
def exam_chunk_basic(init_device, keep_gathered, pin_memory):
@parameterize("async_op", [True, False])
def exam_chunk_basic(init_device, keep_gathered, pin_memory, async_op):
world_size = torch.distributed.get_world_size()
pg = _get_default_group()
my_chunk = Chunk(
@@ -94,9 +95,12 @@ def exam_chunk_basic(init_device, keep_gathered, pin_memory):
assert my_chunk.tensor_state_cnter[TensorState.READY_FOR_REDUCE] == 4
assert my_chunk.can_reduce
my_chunk.reduce()
my_chunk.reduce(async_op)
assert my_chunk.tensor_state_cnter[TensorState.HOLD] == 4
if async_op:
my_chunk.wait_async_reduce()
if keep_gathered is False:
assert my_chunk.cuda_shard.size(0) == 1024 // world_size
assert my_chunk.device_type == "cuda"

View File

@@ -40,12 +40,14 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
@parameterize("model_name", ["transformers_gpt_lm"])
@parameterize("use_grad_checkpoint", [False, True])
@parameterize("master_weights", [False, True])
@parameterize("enable_async_reduce", [False, True])
def exam_gpt_fwd_bwd(
placement_config,
keep_gather,
model_name: str,
use_grad_checkpoint: bool = False,
master_weights: bool = True,
enable_async_reduce=True,
):
init_device = get_accelerator().get_current_device()
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
@@ -69,7 +71,13 @@ def exam_gpt_fwd_bwd(
config_dict[world_size]["chunk_size"] = 5000
config_dict[world_size]["keep_gathered"] = keep_gather
model = GeminiDDP(
model, config_dict, init_device, pin_memory=True, **placement_config, master_weights=master_weights
model,
config_dict,
init_device,
pin_memory=True,
**placement_config,
master_weights=master_weights,
enable_async_reduce=enable_async_reduce,
)
optimizer = HybridAdam(model.parameters(), lr=1e-3)
zero_optim = GeminiOptimizer(optimizer, model, initial_scale=1)

View File

@@ -50,8 +50,14 @@ def check_grad(model: GeminiDDP, torch_model: torch.nn.Module):
@parameterize("model_name", ["transformers_gpt_lm"])
@parameterize("master_weights", [False, True])
@parameterize("use_grad_checkpoint", [False, True])
@parameterize("enable_async_reduce", [False, True])
def exam_gemini_grad_acc(
placement_config, keep_gathered: bool, model_name: str, master_weights: bool, use_grad_checkpoint: bool
placement_config,
keep_gathered: bool,
model_name: str,
master_weights: bool,
use_grad_checkpoint: bool,
enable_async_reduce: bool,
):
init_device = get_accelerator().get_current_device()
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
@@ -81,10 +87,13 @@ def exam_gemini_grad_acc(
pin_memory=True,
enable_gradient_accumulation=True,
master_weights=master_weights,
enable_async_reduce=enable_async_reduce,
**placement_config,
)
optimizer = HybridAdam(gemini_model.parameters(), lr=1e-3)
gemini_optim = GeminiOptimizer(optimizer, gemini_model, initial_scale=1, max_norm=1.0)
gemini_optim = GeminiOptimizer(
optimizer, gemini_model, initial_scale=1, max_norm=1.0, enable_async_reduce=enable_async_reduce
)
rank = dist.get_rank()

View File

@@ -52,7 +52,8 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module):
@parameterize("placement_config", PLACEMENT_CONFIGS)
@parameterize("model_name", ["transformers_gpt_lm"])
@parameterize("master_weights", [True, False])
def exam_grad_clipping(placement_config, model_name: str, master_weights: bool):
@parameterize("enable_async_reduce", [False, True])
def exam_grad_clipping(placement_config, model_name: str, master_weights: bool, enable_async_reduce: bool):
set_seed(1912)
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
iter(model_zoo.get_sub_registry(model_name).values())
@@ -84,6 +85,7 @@ def exam_grad_clipping(placement_config, model_name: str, master_weights: bool):
chunk_init_device=init_device,
pin_memory=True,
master_weights=master_weights,
enable_async_reduce=enable_async_reduce,
**placement_config,
)

View File

@@ -73,7 +73,10 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dty
@parameterize("model_name", TEST_MODELS)
@parameterize("mixed_precision", [torch.half, torch.bfloat16])
@parameterize("master_weights", [True, False])
def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dtype, master_weights: bool):
@parameterize("enable_async_reduce", [False, True])
def exam_model_step(
placement_config, model_name: str, mixed_precision: torch.dtype, master_weights: bool, enable_async_reduce=True
):
set_seed(42)
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
iter(model_zoo.get_sub_registry(model_name).values())
@@ -96,7 +99,12 @@ def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dt
config_dict[world_size]["chunk_size"] = 5000
config_dict[world_size]["keep_gathered"] = False
model = GeminiDDP(
model, config_dict, **placement_config, mixed_precision=mixed_precision, master_weights=master_weights
model,
config_dict,
**placement_config,
mixed_precision=mixed_precision,
master_weights=master_weights,
enable_async_reduce=enable_async_reduce,
)
optimizer = HybridAdam(model.parameters(), lr=1e-3)