[gemini] async grad chunk reduce (all-reduce&reduce-scatter) (#5713)

* [gemini] async grad chunk reduce (all-reduce&reduce-scatter)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [gemini] add test

* [gemini] rename func

* [gemini] update llama benchmark

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* [gemini] use tensor counter

* [gemini] change default config in GeminiPlugin and GeminiDDP

* [chore] typo

* [gemini] fix sync issue & add test cases

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
botbw
2024-05-24 10:31:16 +08:00
committed by GitHub
parent 85946d4236
commit 2fc85abf43
11 changed files with 130 additions and 45 deletions

View File

@@ -73,7 +73,10 @@ def check_param(model: GeminiDDP, torch_model: torch.nn.Module, dtype: torch.dty
@parameterize("model_name", TEST_MODELS)
@parameterize("mixed_precision", [torch.half, torch.bfloat16])
@parameterize("master_weights", [True, False])
def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dtype, master_weights: bool):
@parameterize("enable_async_reduce", [False, True])
def exam_model_step(
placement_config, model_name: str, mixed_precision: torch.dtype, master_weights: bool, enable_async_reduce=True
):
set_seed(42)
model_builder, data_gen_fn, output_transform_fn, loss_fn, *_ = next(
iter(model_zoo.get_sub_registry(model_name).values())
@@ -96,7 +99,12 @@ def exam_model_step(placement_config, model_name: str, mixed_precision: torch.dt
config_dict[world_size]["chunk_size"] = 5000
config_dict[world_size]["keep_gathered"] = False
model = GeminiDDP(
model, config_dict, **placement_config, mixed_precision=mixed_precision, master_weights=master_weights
model,
config_dict,
**placement_config,
mixed_precision=mixed_precision,
master_weights=master_weights,
enable_async_reduce=enable_async_reduce,
)
optimizer = HybridAdam(model.parameters(), lr=1e-3)