[booster] gemini plugin support shard checkpoint (#3610)

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin add shard checkpoint save/load

* gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

* [API Refactoring]gemini plugin support shard checkpoint

---------

Co-authored-by: luchen <luchen@luchendeMBP.lan>
Co-authored-by: luchen <luchen@luchendeMacBook-Pro.local>
This commit is contained in:
jiangmingyan
2023-05-05 14:37:21 +08:00
committed by GitHub
parent 0f785cb1f3
commit 307894f74d
9 changed files with 268 additions and 96 deletions

View File

@@ -1,16 +1,21 @@
import tempfile
import pytest
import torch
import logging
from torch.optim import Adam
from torchvision.models import resnet18
from pathlib import Path
import os
import subprocess
from colossalai.checkpoint_io import GeneralCheckpointIO
from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO
from colossalai.testing import clear_cache_before_run, parameterize
import colossalai
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.utils.cuda import get_current_device
from colossalai.zero import ColoInitContext, ZeroDDP
from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration
from colossalai.zero.gemini.gemini_mgr import GeminiManager
from tests.components_to_test.registry import non_distributed_component_funcs
# ========
# Note:
# 1. due to checkpoint IO can be quite slow if tested with all models, we will only test on resnet for now
@@ -83,7 +88,6 @@ def test_sharded_checkpoint(use_safetensors: bool):
suffix = ".bin"
WEIGHTS_INDEX_NAME = "model.bin.index.json"
# model_ckpt_dir = tempfile.TemporaryDirectory(suffix=suffix)
model_ckpt_dir = tempfile.TemporaryDirectory()
optimizer_ckpt_tempfile = tempfile.NamedTemporaryFile()
@@ -104,6 +108,87 @@ def test_sharded_checkpoint(use_safetensors: bool):
recursive_check(model.state_dict(), new_model.state_dict())
recursive_check(optimizer.state_dict(), new_optimizer.state_dict())
@parameterize('placement_policy', ['cuda', 'cpu'])
@parameterize('model_name', ['bert'])
@parameterize('use_safetensors', [True, False])
def hf_load_colossalai_checkpoint(placement_policy, model_name, use_safetensors: bool):
from transformers import BertTokenizer, BertModel, BertForMaskedLM, BertConfig, BertForSequenceClassification
model_ckpt_dir = tempfile.TemporaryDirectory()
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, *_ = get_components_func()
with ColoInitContext(device=get_current_device()):
bert_model = model_builder()
bert_model.config.save_pretrained(save_directory=model_ckpt_dir.name)
config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100)
chunk_manager = ChunkManager(config_dict)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
bert_model = ZeroDDP(bert_model, gemini_manager)
bert_model.train()
ckpt_io = GeminiCheckpointIO()
if ckpt_io.coordinator.is_master():
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
ckpt_io.save_model(bert_model, model_ckpt_dir.name, True, True, "", (model_size / 3), use_safetensors=use_safetensors)
new_bert_model = BertForSequenceClassification.from_pretrained(model_ckpt_dir.name)
recursive_check(bert_model.state_dict(only_rank_0=True, dtype=torch.float32), new_bert_model.state_dict())
model_ckpt_dir.cleanup()
@parameterize('placement_policy', ['cuda', 'cpu'])
@parameterize('model_name', ['gpt2', 'bert'])
@parameterize('use_safetensors', [True, False])
def exam_state_dict(placement_policy, model_name: str, use_safetensors: bool):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, *_ = get_components_func()
with ColoInitContext(device=get_current_device()):
model = model_builder()
new_model = model_builder()
config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
chunk_manager = ChunkManager(config_dict)
gemini_manager = GeminiManager(placement_policy, chunk_manager)
model = ZeroDDP(model, gemini_manager)
model.train()
new_config_dict, *_ = search_chunk_configuration(new_model, search_range_mb=1, search_interval_byte=100)
new_chunk_manager = ChunkManager(new_config_dict)
new_gemini_manager = GeminiManager(placement_policy, new_chunk_manager)
new_model = ZeroDDP(new_model, new_gemini_manager)
model_ckpt_dir = tempfile.TemporaryDirectory()
ckpt_io = GeminiCheckpointIO()
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2
ckpt_io.save_model(model, model_ckpt_dir.name, True, True, "epoch", (model_size / 3), use_safetensors=use_safetensors)
# load model
if ckpt_io.coordinator.is_master():
ckpt_io.load_model(new_model, model_ckpt_dir.name, strict=True)
model_dict = model.state_dict(only_rank_0=True)
new_model_dict = new_model.state_dict(only_rank_0=True)
recursive_check(model_dict, new_model_dict)
model_ckpt_dir.cleanup()
def run_dist(rank, world_size, port):
config = {}
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_state_dict()
hf_load_colossalai_checkpoint()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [4, 4])
@rerun_if_address_is_in_use()
def test_gemini_ckpIO(world_size):
spawn(run_dist, world_size)
# do recursive check for the optimizer state dict
# if the value is a dict, compare its values
@@ -117,10 +202,14 @@ def recursive_check(d1, d2):
elif isinstance(v, list):
for i in range(len(v)):
if isinstance(v[i], torch.Tensor):
v[i] = v[i].to("cpu")
d2[k][i] = d2[k][i].to("cpu")
assert torch.equal(v[i], d2[k][i])
else:
assert v[i] == d2[k][i]
elif isinstance(v, torch.Tensor):
v = v.to("cpu")
d2[k] = d2[k].to("cpu")
assert torch.equal(v, d2[k])
else:
assert v == d2[k]