mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-12 12:47:21 +00:00
[autoparallel] where_handler_v2 (#1688)
* where generator * [autoparallel] where_handler_v2
This commit is contained in:
@@ -0,0 +1,85 @@
|
||||
from colossalai.fx.tracer.meta_patch.patched_module import linear
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.where_handler_v2 import WhereHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
class ConvModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, condition, x, y):
|
||||
output = torch.where(condition, x, y)
|
||||
return output
|
||||
|
||||
|
||||
def test_where_handler():
|
||||
model = ConvModel()
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %condition : torch.Tensor [#users=1] = placeholder[target=condition]
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %y : torch.Tensor [#users=1] = placeholder[target=y]
|
||||
# %where : [#users=1] = call_function[target=torch.where](args = (%condition, %x, %y), kwargs = {})
|
||||
# return where
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"condition": torch.rand(4, 4, 64, 64).to('meta'),
|
||||
"x": torch.rand(4, 1, 64, 64).to('meta'),
|
||||
"y": torch.rand(1, 4, 64, 64).to('meta')
|
||||
})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
where_node = list(graph.nodes)[3]
|
||||
strategies_vector = StrategiesVector(where_node)
|
||||
|
||||
# build handler
|
||||
handler = WhereHandler(node=where_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping, _ = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['condition'].name == "condition"
|
||||
assert mapping['condition'].data.is_meta
|
||||
assert mapping['condition'].data.shape == torch.Size([4, 4, 64, 64])
|
||||
assert mapping['condition'].type == OperationDataType.ARG
|
||||
assert mapping['condition'].logical_shape == torch.Size([4, 4, 64, 64])
|
||||
|
||||
assert mapping['x'].name == "x"
|
||||
assert mapping['x'].data.is_meta
|
||||
assert mapping['x'].data.shape == torch.Size([4, 1, 64, 64])
|
||||
assert mapping['x'].type == OperationDataType.ARG
|
||||
assert mapping['x'].logical_shape == torch.Size([4, 4, 64, 64])
|
||||
|
||||
assert mapping['y'].name == "y"
|
||||
assert mapping['y'].data.is_meta
|
||||
assert mapping['y'].data.shape == torch.Size([1, 4, 64, 64])
|
||||
assert mapping['y'].type == OperationDataType.ARG
|
||||
assert mapping['y'].logical_shape == torch.Size([4, 4, 64, 64])
|
||||
|
||||
assert mapping['output'].name == "where"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([4, 4, 64, 64])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
handler.register_strategy()
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
# 4*3 + 4*3/2*2 + 1
|
||||
assert len(strategy_name_list) == 25
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_where_handler()
|
Reference in New Issue
Block a user