[Tensor] add module handler for linear (#1021)

* add module spec for linear

* polish

* polish

* polish
This commit is contained in:
Ziyue Jiang
2022-05-26 11:50:44 +08:00
committed by GitHub
parent ee50497db2
commit 32291dd73f
7 changed files with 341 additions and 2 deletions

View File

@@ -8,8 +8,12 @@ from ._ops import *
from .optim.colo_optimizer import ColoOptimizer
from . import distspec
from .dist_spec_mgr import DistSpecManager
from .module_utils import register_colo_module, is_colo_module, get_colo_module, init_colo_module, check_colo_module
from .modules import ColoLinear
__all__ = [
'ColoTensor', 'convert_parameter', 'colo_op_impl', 'ComputePattern', 'TensorSpec', 'ParallelAction',
'named_params_with_colotensor', 'ColoOptimizer', 'ColoParameter', 'distspec', 'DistSpecManager'
'named_params_with_colotensor', 'ColoOptimizer', 'ColoParameter', 'distspec', 'DistSpecManager',
'register_colo_module', 'is_colo_module', 'get_colo_module', 'init_colo_module', 'check_colo_module',
'ColoLinear'
]

View File

@@ -0,0 +1,92 @@
from typing import Dict
from colossalai.tensor import ColoParameter, ParallelAction, TensorSpec
from .modules import ColoModule
import torch
_COLOSSAL_MODULES: Dict[type, ColoModule] = {}
def register_colo_module(module_type: type, colo_module: ColoModule):
global _COLOSSAL_MODULES
_COLOSSAL_MODULES[module_type] = colo_module
def is_colo_module(module: torch.nn.Module):
global _COLOSSAL_MODULES
return type(module) in _COLOSSAL_MODULES
def get_colo_module(module: torch.nn.Module):
global _COLOSSAL_MODULES
if is_colo_module(module):
colo_module = _COLOSSAL_MODULES[type(module)]
colo_module.register()
return colo_module
else:
return None
def check_colo_module(module: torch.nn.Module, recursive=True):
if is_colo_module(module):
colo_module = get_colo_module(module)
param_names = colo_module.get_param_names()
compute_pattern = None
for param_name in param_names:
param = module.get_parameter(param_name)
if not isinstance(param, ColoParameter):
raise Exception(f'Invalid ColoParameter spec: {param} in {module} is not a ColoParameter.')
if param.has_spec():
cur_compute_pattern = param.spec.parallel_action.compute_pattern
if compute_pattern is None:
compute_pattern = cur_compute_pattern
else:
if cur_compute_pattern != compute_pattern:
raise Exception(f'Invalid ColoParameter spec: Params in {module} have different compute_pattern.')
else:
continue
if compute_pattern is not None:
if not colo_module.has_compute_pattern(compute_pattern):
raise Exception(f'Invalid ColoParameter spec: ComputePattern {compute_pattern} in {module} is not allowed.')
match_specs = False
allowed_specs = colo_module.get_dist_specs(compute_pattern)
for _, param_specs in allowed_specs.items():
cur_match = True
for param_name, dist_spec in param_specs.items():
param = module.get_parameter(param_name)
if param.has_spec():
if dist_spec != param.spec.dist_spec:
cur_match = False
break
else:
if dist_spec is not None:
cur_match = False
break
if cur_match == True:
match_specs = True
break
if match_specs == False:
raise Exception(f'Invalid ColoParameter spec: Params in {module} are incorrectly sharded.')
if recursive == True:
for submodule in module.children():
check_colo_module(submodule, recursive=True)
def init_colo_module(module: torch.nn.Module, parallel_action: ParallelAction, recursive=True, label='default'):
compute_pattern = parallel_action.compute_pattern
if is_colo_module(module):
# for each param
# set DistSpec and ParallelAction
colo_module = get_colo_module(module)
if not colo_module.has_compute_pattern_with_label(compute_pattern, label=label):
raise NotImplementedError
for param_name, dist_spec in colo_module.get_dist_specs_with_label(compute_pattern, label=label).items():
if dist_spec is None:
continue
param = module.get_parameter(param_name)
if isinstance(param, ColoParameter):
spec = TensorSpec(dist_spec, parallel_action)
param.set_spec(spec)
check_colo_module(module, recursive=False)
if recursive == True:
for submodule in module.children():
init_colo_module(submodule, parallel_action, recursive=True, label=label)

View File

@@ -0,0 +1,2 @@
from .colo_module import ColoModule
from .linear import ColoLinear

View File

@@ -0,0 +1,51 @@
from colossalai.tensor.distspec import _DistSpec
from colossalai.tensor import ComputePattern
from typing import List, Dict
class ColoModule(object):
def __init__(self):
self._shard_params: List[str] = []
# Example:
# {ComputePattern.TP1D:
# 'default':
# 'weight':
# distspec.shard(xxxxx)
# 'bias':
# distspec.shard(xxxxx)
# 'row': ...
# 'col': ...
# }
self._allowed_patterns: Dict[ComputePattern, Dict[str, Dict[str, _DistSpec]]] = {}
def _register_shard_params(self, params: List[str]):
self._shard_params = params
def _register_allowed_patterns(self, compute_pattern: ComputePattern, dist_specs: Dict[str, _DistSpec], label='default'):
assert list(dist_specs.keys()).sort() == self._shard_params.sort(), 'Every registered param should have dist_spec.'
if not compute_pattern in self._allowed_patterns:
self._allowed_patterns[compute_pattern] = {}
self._allowed_patterns[compute_pattern][label] = dist_specs
def _set_default(self, compute_pattern: ComputePattern, target_label):
self._allowed_patterns[compute_pattern]['default'] = self._allowed_patterns[compute_pattern][target_label]
def has_compute_pattern(self, compute_pattern: ComputePattern):
return compute_pattern in self._allowed_patterns
def get_dist_specs(self, compute_pattern: ComputePattern):
assert self.has_compute_pattern(compute_pattern)
return self._allowed_patterns[compute_pattern]
def has_compute_pattern_with_label(self, compute_pattern: ComputePattern, label='default'):
return compute_pattern in self._allowed_patterns and label in self._allowed_patterns[compute_pattern]
def get_dist_specs_with_label(self, compute_pattern: ComputePattern, label='default'):
assert self.has_compute_pattern_with_label(compute_pattern, label)
return self._allowed_patterns[compute_pattern][label]
def get_param_names(self):
return self._shard_params
def register(self):
raise NotImplementedError

View File

@@ -0,0 +1,39 @@
from .colo_module import ColoModule
from colossalai.tensor import ComputePattern, distspec
from colossalai.core import global_context as gpc
from colossalai.context.parallel_mode import ParallelMode
class ColoLinear(ColoModule):
def __init__(self):
super(ColoLinear, self).__init__()
self._register_shard_params(['weight', 'bias'])
self._register = False
def register(self):
if self._register == False:
self._set_TP1D()
self._register = True
def _set_TP1D(self):
# TP1D Row Linear
_compute_pattern = ComputePattern.TP1D
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [-1], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias': None
},
label='row',
)
# TP1D Col Linear
self._register_allowed_patterns(
compute_pattern=_compute_pattern,
dist_specs={
'weight': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)]),
'bias': distspec.shard(gpc.get_group(ParallelMode.PARALLEL_1D), [0], [gpc.get_world_size(ParallelMode.PARALLEL_1D)])
},
label='col',
)
self._set_default(compute_pattern=_compute_pattern, target_label='row')