mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 12:30:42 +00:00
[autoparallel] add conv metainfo class for auto parallel (#1796)
* [fx] metainfo class for auto parallel * [fx] add unit test for linear metainfo * [fx] fix bwd param for linear * [fx] modify unit test * [fx] modify unit test * [fx] modify import * [fx] modify import * [fx] modify import * [fx] move meta profiler to auto parallel * [fx] add conv metainfo class * [fx] restore profiler * [fx] restore meta profiler * [autoparallel] modify unit test * [fx] modify unit test
This commit is contained in:
@@ -0,0 +1,61 @@
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
|
||||
|
||||
|
||||
def _conv_module_mem_test(rank, bias, world_size, port):
|
||||
"""This function is for conv memory test
|
||||
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
|
||||
|
||||
Args:
|
||||
Args:
|
||||
rank: device rank
|
||||
bias: indicate whether conv module need bias
|
||||
world_size: number of devices
|
||||
port: port for initializing process group
|
||||
"""
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = nn.Sequential(nn.Conv2d(4, 64, 3, padding=1, bias=bias)).cuda()
|
||||
input = torch.rand(4, 4, 64, 64).cuda()
|
||||
input.requires_grad = True
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of conv node in computation graph
|
||||
node_index = 1
|
||||
# total number of conv strategies
|
||||
strategy_number = 16
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input],
|
||||
meta_arg_names=['input'])
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_conv_meta_concrete_info_match(bias=False):
|
||||
world_size = 4
|
||||
run_func_module = partial(_conv_module_mem_test, bias=bias, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_conv_meta_concrete_info_match()
|
@@ -20,48 +20,15 @@ if torch.__version__ >= '1.12.0':
|
||||
from colossalai.auto_parallel.meta_profiler import MetaInfo, meta_register
|
||||
|
||||
|
||||
@pytest.mark.skipif(torch.__version__ < '1.12.0', reason='PyTorch version is too low')
|
||||
@parameterize('bias', [True, False])
|
||||
def test_linear_metainfo(bias):
|
||||
model = nn.Sequential(nn.Linear(16, 32, bias=bias).to('meta'))
|
||||
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model, meta_args={"input": torch.rand(2, 2, 4, 16).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
linear_mod_node = list(graph.nodes)[1]
|
||||
strategies_vector = StrategiesVector(linear_mod_node)
|
||||
|
||||
# build handler
|
||||
handler = LinearModuleHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# build strategy
|
||||
strategies_vector = handler.register_strategy(compute_resharding_cost=False)
|
||||
|
||||
# assert module is registered
|
||||
assert meta_register.has(linear_mod_node.graph.owning_module.get_submodule(linear_mod_node.target).__class__)
|
||||
|
||||
# check metainfo
|
||||
for strategy in strategies_vector:
|
||||
strategy: ShardingStrategy
|
||||
try:
|
||||
metainfo = MetaInfo(strategy,
|
||||
linear_mod_node.graph.owning_module.get_submodule(linear_mod_node.target).__class__)
|
||||
|
||||
except:
|
||||
raise RuntimeError(f"Failed to compute metainfo for {strategy}")
|
||||
|
||||
|
||||
def _linear_mem_test(rank, bias, world_size, port):
|
||||
def _linear_module_mem_test(rank, bias, world_size, port):
|
||||
"""This function is for linear memory test
|
||||
Test and print real memory cost and estimated, this test will not be executed
|
||||
in unit test.
|
||||
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
|
||||
|
||||
Args:
|
||||
bias (bool, optional): Indicate whether we need bias for Linear. Defaults to True.
|
||||
rank: device rank
|
||||
bias: indicate whether linear module need bias
|
||||
world_size: number of devices
|
||||
port: port for initializing process group
|
||||
"""
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
@@ -87,11 +54,9 @@ def _linear_mem_test(rank, bias, world_size, port):
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_linear_meta_concrete_info_match(bias=False):
|
||||
world_size = 4
|
||||
run_func_module = partial(_linear_mem_test, bias=bias, world_size=world_size, port=free_port())
|
||||
run_func_module = partial(_linear_module_mem_test, bias=bias, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# test_linear_metainfo()
|
||||
# _linear_mem_test(bias=True)
|
||||
test_linear_meta_concrete_info_match()
|
||||
|
Reference in New Issue
Block a user