[NFC] polish colossalai/kernel/cuda_native/csrc/layer_norm_cuda_kernel.cu code style (#661)

This commit is contained in:
shenggan 2022-04-02 21:28:47 +08:00 committed by binmakeswell
parent c336cd3066
commit 331683bf82

View File

@ -2,23 +2,17 @@
* https://github.com/NVIDIA/apex
* with minor changes. */
#include <cuda.h>
#include <cuda_runtime.h>
#include "ATen/ATen.h"
#include "ATen/AccumulateType.h"
#include "ATen/cuda/CUDAContext.h"
#include "ATen/cuda/DeviceUtils.cuh"
#include <cuda.h>
#include <cuda_runtime.h>
#include "type_shim.h"
template<typename U> __device__
void cuWelfordOnlineSum(
const U curr,
U& mu,
U& sigma2,
U& count)
{
template <typename U>
__device__ void cuWelfordOnlineSum(const U curr, U& mu, U& sigma2, U& count) {
count = count + U(1);
U delta = curr - mu;
U lmean = mu + delta / count;
@ -27,15 +21,9 @@ void cuWelfordOnlineSum(
sigma2 = sigma2 + delta * delta2;
}
template<typename U> __device__
void cuChanOnlineSum(
const U muB,
const U sigma2B,
const U countB,
U& mu,
U& sigma2,
U& count)
{
template <typename U>
__device__ void cuChanOnlineSum(const U muB, const U sigma2B, const U countB,
U& mu, U& sigma2, U& count) {
U delta = muB - mu;
U nA = count;
U nB = countB;
@ -44,7 +32,7 @@ void cuChanOnlineSum(
if (nX > U(0)) {
nA = nA / nX;
nB = nB / nX;
mu = nA*mu + nB*muB;
mu = nA * mu + nB * muB;
sigma2 = sigma2 + sigma2B + delta * delta * nA * nB * nX;
} else {
mu = U(0);
@ -52,16 +40,10 @@ void cuChanOnlineSum(
}
}
template<typename T, typename U> __device__
void cuWelfordMuSigma2(
const T* __restrict__ vals,
const int n1,
const int n2,
const int i1,
U& mu,
U& sigma2,
U* buf)
{
template <typename T, typename U>
__device__ void cuWelfordMuSigma2(const T* __restrict__ vals, const int n1,
const int n2, const int i1, U& mu, U& sigma2,
U* buf) {
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensor is contiguous
@ -69,7 +51,7 @@ void cuWelfordMuSigma2(
//
// compute variance and mean over n2
U count = U(0);
mu= U(0);
mu = U(0);
sigma2 = U(0);
if (i1 < n1) {
// one warp normalizes one n1 index,
@ -77,46 +59,47 @@ void cuWelfordMuSigma2(
// initialize with standard Welford algorithm
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
const T* lvals = vals + i1*n2;
int l = 4*thrx;
for (; l+3 < n2; l+=4*numx) {
const T* lvals = vals + i1 * n2;
int l = 4 * thrx;
for (; l + 3 < n2; l += 4 * numx) {
for (int k = 0; k < 4; ++k) {
U curr = static_cast<U>(lvals[l+k]);
cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
U curr = static_cast<U>(lvals[l + k]);
cuWelfordOnlineSum<U>(curr, mu, sigma2, count);
}
}
for (; l < n2; ++l) {
U curr = static_cast<U>(lvals[l]);
cuWelfordOnlineSum<U>(curr,mu,sigma2,count);
cuWelfordOnlineSum<U>(curr, mu, sigma2, count);
}
// intra-warp reductions
for (int l = 0; l <= 4; ++l) {
int srcLaneB = (threadIdx.x+(1<<l))&31;
int srcLaneB = (threadIdx.x + (1 << l)) & 31;
U muB = WARP_SHFL(mu, srcLaneB);
U countB = WARP_SHFL(count, srcLaneB);
U sigma2B = WARP_SHFL(sigma2, srcLaneB);
cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
cuChanOnlineSum<U>(muB, sigma2B, countB, mu, sigma2, count);
}
// threadIdx.x == 0 has correct values for each warp
// inter-warp reductions
if (blockDim.y > 1) {
U* ubuf = (U*)buf;
U* ibuf = (U*)(ubuf + blockDim.y);
for (int offset = blockDim.y/2; offset > 0; offset /= 2) {
for (int offset = blockDim.y / 2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
if (threadIdx.x == 0 && threadIdx.y >= offset &&
threadIdx.y < 2 * offset) {
const int wrt_y = threadIdx.y - offset;
ubuf[2*wrt_y] = mu;
ubuf[2*wrt_y+1] = sigma2;
ubuf[2 * wrt_y] = mu;
ubuf[2 * wrt_y + 1] = sigma2;
ibuf[wrt_y] = count;
}
__syncthreads();
// lower half merges
if (threadIdx.x == 0 && threadIdx.y < offset) {
U muB = ubuf[2*threadIdx.y];
U sigma2B = ubuf[2*threadIdx.y+1];
U muB = ubuf[2 * threadIdx.y];
U sigma2B = ubuf[2 * threadIdx.y + 1];
U countB = ibuf[threadIdx.y];
cuChanOnlineSum<U>(muB,sigma2B,countB,mu,sigma2,count);
cuChanOnlineSum<U>(muB, sigma2B, countB, mu, sigma2, count);
}
__syncthreads();
}
@ -127,25 +110,19 @@ void cuWelfordMuSigma2(
}
__syncthreads();
mu = ubuf[0];
sigma2 = ubuf[1]/U(n2);
sigma2 = ubuf[1] / U(n2);
// don't care about final value of count, we know count == n2
} else {
mu = WARP_SHFL(mu, 0);
sigma2 = WARP_SHFL(sigma2/U(n2), 0);
sigma2 = WARP_SHFL(sigma2 / U(n2), 0);
}
}
}
template<> __device__
void cuWelfordMuSigma2(
const at::Half* __restrict__ vals,
const int n1,
const int n2,
const int i1,
float& mu,
float& sigma2,
float* buf)
{
template <>
__device__ void cuWelfordMuSigma2(const at::Half* __restrict__ vals,
const int n1, const int n2, const int i1,
float& mu, float& sigma2, float* buf) {
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensor is contiguous
@ -153,7 +130,7 @@ void cuWelfordMuSigma2(
//
// compute variance and mean over n2
float count = 0.0f;
mu= float(0);
mu = float(0);
sigma2 = float(0);
if (i1 < n1) {
// one warp normalizes one n1 index,
@ -161,57 +138,58 @@ void cuWelfordMuSigma2(
// initialize with standard Welford algorithm
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
const at::Half* lvals = vals + i1*n2;
int l = 8*thrx;
if ((((size_t)lvals)&3) != 0) {
const at::Half* lvals = vals + i1 * n2;
int l = 8 * thrx;
if ((((size_t)lvals) & 3) != 0) {
// 16 bit alignment
// first thread consumes first point
if (thrx == 0) {
float curr = static_cast<float>(lvals[0]);
cuWelfordOnlineSum(curr,mu,sigma2,count);
cuWelfordOnlineSum(curr, mu, sigma2, count);
}
++l;
}
// at this point, lvals[l] are 32 bit aligned for all threads.
for (; l+7 < n2; l+=8*numx) {
for (int k = 0; k < 8; k+=2) {
float2 curr = __half22float2(*((__half2*)(lvals+l+k)));
cuWelfordOnlineSum(curr.x,mu,sigma2,count);
cuWelfordOnlineSum(curr.y,mu,sigma2,count);
for (; l + 7 < n2; l += 8 * numx) {
for (int k = 0; k < 8; k += 2) {
float2 curr = __half22float2(*((__half2*)(lvals + l + k)));
cuWelfordOnlineSum(curr.x, mu, sigma2, count);
cuWelfordOnlineSum(curr.y, mu, sigma2, count);
}
}
for (; l < n2; ++l) {
float curr = static_cast<float>(lvals[l]);
cuWelfordOnlineSum(curr,mu,sigma2,count);
cuWelfordOnlineSum(curr, mu, sigma2, count);
}
// intra-warp reductions
for (int l = 0; l <= 4; ++l) {
int srcLaneB = (threadIdx.x+(1<<l))&31;
int srcLaneB = (threadIdx.x + (1 << l)) & 31;
float muB = WARP_SHFL(mu, srcLaneB);
float countB = WARP_SHFL(count, srcLaneB);
float sigma2B = WARP_SHFL(sigma2, srcLaneB);
cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
cuChanOnlineSum(muB, sigma2B, countB, mu, sigma2, count);
}
// threadIdx.x == 0 has correct values for each warp
// inter-warp reductions
if (blockDim.y > 1) {
float* ubuf = (float*)buf;
float* ibuf = (float*)(ubuf + blockDim.y);
for (int offset = blockDim.y/2; offset > 0; offset /= 2) {
for (int offset = blockDim.y / 2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.x == 0 && threadIdx.y >= offset && threadIdx.y < 2*offset) {
if (threadIdx.x == 0 && threadIdx.y >= offset &&
threadIdx.y < 2 * offset) {
const int wrt_y = threadIdx.y - offset;
ubuf[2*wrt_y] = mu;
ubuf[2*wrt_y+1] = sigma2;
ubuf[2 * wrt_y] = mu;
ubuf[2 * wrt_y + 1] = sigma2;
ibuf[wrt_y] = count;
}
__syncthreads();
// lower half merges
if (threadIdx.x == 0 && threadIdx.y < offset) {
float muB = ubuf[2*threadIdx.y];
float sigma2B = ubuf[2*threadIdx.y+1];
float muB = ubuf[2 * threadIdx.y];
float sigma2B = ubuf[2 * threadIdx.y + 1];
float countB = ibuf[threadIdx.y];
cuChanOnlineSum(muB,sigma2B,countB,mu,sigma2,count);
cuChanOnlineSum(muB, sigma2B, countB, mu, sigma2, count);
}
__syncthreads();
}
@ -222,28 +200,32 @@ void cuWelfordMuSigma2(
}
__syncthreads();
mu = ubuf[0];
sigma2 = ubuf[1]/float(n2);
sigma2 = ubuf[1] / float(n2);
// don't care about final value of count, we know count == n2
} else {
mu = WARP_SHFL(mu, 0);
sigma2 = WARP_SHFL(sigma2/float(n2), 0);
sigma2 = WARP_SHFL(sigma2 / float(n2), 0);
}
}
}
template<typename U> U rsqrt(U v) {
template <typename U>
U rsqrt(U v) {
return U(1) / sqrt(v);
}
template<> float rsqrt(float v) {
template <>
float rsqrt(float v) {
return rsqrtf(v);
}
template<> double rsqrt(double v) {
template <>
double rsqrt(double v) {
return rsqrt(v);
}
namespace {
// This is the un-specialized struct. Note that we prevent instantiation of this
// struct by putting an undefined symbol in the function body so it won't compile.
// This is the un-specialized struct. Note that we prevent instantiation of
// this struct by putting an undefined symbol in the function body so it won't
// compile.
// template <typename T>
// struct SharedMemory
// {
@ -260,51 +242,43 @@ template <typename T>
struct SharedMemory;
template <>
struct SharedMemory <float>
{
__device__ float *getPointer()
{
struct SharedMemory<float> {
__device__ float* getPointer() {
extern __shared__ float s_float[];
return s_float;
}
};
}
} // namespace
template<typename T, typename U, typename V> __global__
void cuApplyLayerNorm(
V* __restrict__ output_vals,
U* __restrict__ mean,
U* __restrict__ invvar,
const T* __restrict__ vals,
const int n1,
const int n2,
const U epsilon,
template <typename T, typename U, typename V>
__global__ void cuApplyLayerNorm(V* __restrict__ output_vals,
U* __restrict__ mean, U* __restrict__ invvar,
const T* __restrict__ vals, const int n1,
const int n2, const U epsilon,
const V* __restrict__ gamma,
const V* __restrict__ beta
)
{
const V* __restrict__ beta) {
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensors are contiguous
//
for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
for (auto i1 = blockIdx.y; i1 < n1; i1 += gridDim.y) {
SharedMemory<U> shared;
U* buf = shared.getPointer();
U mu,sigma2;
cuWelfordMuSigma2(vals,n1,n2,i1,mu,sigma2,buf);
const T* lvals = vals + i1*n2;
V* ovals = output_vals + i1*n2;
U mu, sigma2;
cuWelfordMuSigma2(vals, n1, n2, i1, mu, sigma2, buf);
const T* lvals = vals + i1 * n2;
V* ovals = output_vals + i1 * n2;
U c_invvar = rsqrt(sigma2 + epsilon);
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
if (gamma != NULL && beta != NULL) {
for (int i = thrx; i < n2; i+=numx) {
for (int i = thrx; i < n2; i += numx) {
U curr = static_cast<U>(lvals[i]);
ovals[i] = gamma[i] * static_cast<V>(c_invvar * (curr - mu)) + beta[i];
}
} else {
for (int i = thrx; i < n2; i+=numx) {
for (int i = thrx; i < n2; i += numx) {
U curr = static_cast<U>(lvals[i]);
ovals[i] = static_cast<V>(c_invvar * (curr - mu));
}
@ -316,36 +290,26 @@ void cuApplyLayerNorm(
}
}
template<typename T, typename U, typename V> __device__
void cuLoadWriteStridedInputs(
const int i1_block,
const int thr_load_row_off,
const int thr_load_col_off,
const int i2_off,
const int row_stride,
U* warp_buf1,
U* warp_buf2,
const T* input,
const V* dout,
const int i1_end,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar
)
{
int i1 = i1_block+thr_load_row_off;
template <typename T, typename U, typename V>
__device__ void cuLoadWriteStridedInputs(
const int i1_block, const int thr_load_row_off, const int thr_load_col_off,
const int i2_off, const int row_stride, U* warp_buf1, U* warp_buf2,
const T* input, const V* dout, const int i1_end, const int n2,
const U* __restrict__ mean, const U* __restrict__ invvar) {
int i1 = i1_block + thr_load_row_off;
if (i1 < i1_end) {
U curr_mean = mean[i1];
U curr_invvar = invvar[i1];
for (int k = 0; k < blockDim.y; ++k) {
int i2 = i2_off + k;
int load_idx = i1*n2+i2;
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
if (i2<n2) {
int load_idx = i1 * n2 + i2;
int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
if (i2 < n2) {
U curr_input = static_cast<U>(input[load_idx]);
U curr_dout = static_cast<U>(dout[load_idx]);
warp_buf1[write_idx] = curr_dout;
warp_buf2[write_idx] = curr_dout * (curr_input - curr_mean) * curr_invvar;
warp_buf2[write_idx] =
curr_dout * (curr_input - curr_mean) * curr_invvar;
} else {
warp_buf1[write_idx] = U(0);
warp_buf2[write_idx] = U(0);
@ -353,78 +317,71 @@ void cuLoadWriteStridedInputs(
}
} else {
for (int k = 0; k < blockDim.y; ++k) {
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
warp_buf1[write_idx] = U(0);
warp_buf2[write_idx] = U(0);
}
}
}
template<typename T, typename U, typename V> __device__
void cuLoadAddStridedInputs(
const int i1_block,
const int thr_load_row_off,
const int thr_load_col_off,
const int i2_off,
const int row_stride,
U* warp_buf1,
U* warp_buf2,
const T* input,
const V* dout,
const int i1_end,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar
)
{
int i1 = i1_block+thr_load_row_off;
template <typename T, typename U, typename V>
__device__ void cuLoadAddStridedInputs(
const int i1_block, const int thr_load_row_off, const int thr_load_col_off,
const int i2_off, const int row_stride, U* warp_buf1, U* warp_buf2,
const T* input, const V* dout, const int i1_end, const int n2,
const U* __restrict__ mean, const U* __restrict__ invvar) {
int i1 = i1_block + thr_load_row_off;
if (i1 < i1_end) {
U curr_mean = mean[i1];
U curr_invvar = invvar[i1];
for (int k = 0; k < blockDim.y; ++k) {
int i2 = i2_off + k;
int load_idx = i1*n2+i2;
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
if (i2<n2) {
int load_idx = i1 * n2 + i2;
int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
if (i2 < n2) {
U curr_input = static_cast<U>(input[load_idx]);
U curr_dout = static_cast<U>(dout[load_idx]);
warp_buf1[write_idx] += curr_dout;
warp_buf2[write_idx] += curr_dout * (curr_input - curr_mean) * curr_invvar;
warp_buf2[write_idx] +=
curr_dout * (curr_input - curr_mean) * curr_invvar;
}
}
}
}
template<typename T, typename U, typename V> __global__
void cuComputePartGradGammaBeta(
const V* __restrict__ dout,
const T* __restrict__ input,
const int n1,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar,
U epsilon,
U* part_grad_gamma,
U* part_grad_beta)
{
const int numsegs_n1 = (n1+blockDim.y*blockDim.y-1) / (blockDim.y*blockDim.y);
template <typename T, typename U, typename V>
__global__ void cuComputePartGradGammaBeta(
const V* __restrict__ dout, const T* __restrict__ input, const int n1,
const int n2, const U* __restrict__ mean, const U* __restrict__ invvar,
U epsilon, U* part_grad_gamma, U* part_grad_beta) {
const int numsegs_n1 =
(n1 + blockDim.y * blockDim.y - 1) / (blockDim.y * blockDim.y);
const int segs_per_block = (numsegs_n1 + gridDim.y - 1) / gridDim.y;
const int i1_beg = blockIdx.y * segs_per_block * blockDim.y*blockDim.y;
const int i1_beg_plus_one = (blockIdx.y+1) * segs_per_block * blockDim.y*blockDim.y;
const int i1_beg = blockIdx.y * segs_per_block * blockDim.y * blockDim.y;
const int i1_beg_plus_one =
(blockIdx.y + 1) * segs_per_block * blockDim.y * blockDim.y;
const int i1_end = i1_beg_plus_one < n1 ? i1_beg_plus_one : n1;
const int row_stride = blockDim.x+1;
const int thr_load_col_off = (threadIdx.x*blockDim.y)&(blockDim.x-1);
const int thr_load_row_off = (threadIdx.x*blockDim.y)/blockDim.x + threadIdx.y*blockDim.y;
const int row_stride = blockDim.x + 1;
const int thr_load_col_off = (threadIdx.x * blockDim.y) & (blockDim.x - 1);
const int thr_load_row_off =
(threadIdx.x * blockDim.y) / blockDim.x + threadIdx.y * blockDim.y;
const int i2_off = blockIdx.x * blockDim.x + thr_load_col_off;
SharedMemory<U> shared;
U* buf = shared.getPointer(); // buf has at least blockDim.x * blockDim.y * blockDim.y + (blockDim.y - 1)*(blockDim.x/blockDim.y) elements
U* buf = shared.getPointer(); // buf has at least blockDim.x * blockDim.y *
// blockDim.y + (blockDim.y -
// 1)*(blockDim.x/blockDim.y) elements
U* warp_buf1 = (U*)buf;
U* warp_buf2 = warp_buf1 + blockDim.y * blockDim.y * row_stride;
// compute partial sums from strided inputs
// do this to increase number of loads in flight
cuLoadWriteStridedInputs(i1_beg,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input,dout,i1_end,n2,mean,invvar);
for (int i1_block = i1_beg+blockDim.y*blockDim.y; i1_block < i1_end; i1_block+=blockDim.y*blockDim.y) {
cuLoadAddStridedInputs(i1_block,thr_load_row_off,thr_load_col_off,i2_off,row_stride,warp_buf1,warp_buf2,input,dout,i1_end,n2,mean,invvar);
cuLoadWriteStridedInputs(i1_beg, thr_load_row_off, thr_load_col_off, i2_off,
row_stride, warp_buf1, warp_buf2, input, dout,
i1_end, n2, mean, invvar);
for (int i1_block = i1_beg + blockDim.y * blockDim.y; i1_block < i1_end;
i1_block += blockDim.y * blockDim.y) {
cuLoadAddStridedInputs(i1_block, thr_load_row_off, thr_load_col_off, i2_off,
row_stride, warp_buf1, warp_buf2, input, dout,
i1_end, n2, mean, invvar);
}
__syncthreads();
// inter-warp reductions
@ -432,21 +389,21 @@ void cuComputePartGradGammaBeta(
U acc1 = U(0);
U acc2 = U(0);
for (int k = 0; k < blockDim.y; ++k) {
int row1 = threadIdx.y + k*blockDim.y;
int idx1 = row1*row_stride + threadIdx.x;
int row1 = threadIdx.y + k * blockDim.y;
int idx1 = row1 * row_stride + threadIdx.x;
acc1 += warp_buf1[idx1];
acc2 += warp_buf2[idx1];
}
warp_buf1[threadIdx.y*row_stride+threadIdx.x] = acc1;
warp_buf2[threadIdx.y*row_stride+threadIdx.x] = acc2;
warp_buf1[threadIdx.y * row_stride + threadIdx.x] = acc1;
warp_buf2[threadIdx.y * row_stride + threadIdx.x] = acc2;
__syncthreads();
// sum all warps
for (int offset = blockDim.y/2; offset > 1; offset /= 2) {
for (int offset = blockDim.y / 2; offset > 1; offset /= 2) {
if (threadIdx.y < offset) {
int row1 = threadIdx.y;
int row2 = threadIdx.y + offset;
int idx1 = row1*row_stride + threadIdx.x;
int idx2 = row2*row_stride + threadIdx.x;
int idx1 = row1 * row_stride + threadIdx.x;
int idx2 = row2 * row_stride + threadIdx.x;
warp_buf1[idx1] += warp_buf1[idx2];
warp_buf2[idx1] += warp_buf2[idx2];
}
@ -456,23 +413,19 @@ void cuComputePartGradGammaBeta(
if (threadIdx.y == 0 && i2 < n2) {
int row1 = threadIdx.y;
int row2 = threadIdx.y + 1;
int idx1 = row1*row_stride + threadIdx.x;
int idx2 = row2*row_stride + threadIdx.x;
part_grad_beta[blockIdx.y*n2+i2] = warp_buf1[idx1] + warp_buf1[idx2];
part_grad_gamma[blockIdx.y*n2+i2] = warp_buf2[idx1] + warp_buf2[idx2];
int idx1 = row1 * row_stride + threadIdx.x;
int idx2 = row2 * row_stride + threadIdx.x;
part_grad_beta[blockIdx.y * n2 + i2] = warp_buf1[idx1] + warp_buf1[idx2];
part_grad_gamma[blockIdx.y * n2 + i2] = warp_buf2[idx1] + warp_buf2[idx2];
}
}
template<typename U, typename V> __global__
void cuComputeGradGammaBeta(
const U* part_grad_gamma,
template <typename U, typename V>
__global__ void cuComputeGradGammaBeta(const U* part_grad_gamma,
const U* part_grad_beta,
const int part_size,
const int n1,
const int n2,
V* grad_gamma,
V* grad_beta)
{
const int part_size, const int n1,
const int n2, V* grad_gamma,
V* grad_beta) {
// sum partial gradients for gamma and beta
SharedMemory<U> shared;
U* buf = shared.getPointer();
@ -482,27 +435,30 @@ void cuComputeGradGammaBeta(
int num_warp_reductions = part_size / blockDim.y;
U sum_gamma = U(0);
U sum_beta = U(0);
const U* part_grad_gamma_ptr = part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
const U* part_grad_beta_ptr = part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
for (int warp_offset = 0; warp_offset < num_warp_reductions; ++warp_offset) {
sum_gamma += part_grad_gamma_ptr[warp_offset*n2];
sum_beta += part_grad_beta_ptr[warp_offset*n2];
const U* part_grad_gamma_ptr =
part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
const U* part_grad_beta_ptr =
part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
for (int warp_offset = 0; warp_offset < num_warp_reductions;
++warp_offset) {
sum_gamma += part_grad_gamma_ptr[warp_offset * n2];
sum_beta += part_grad_beta_ptr[warp_offset * n2];
}
// inter-warp reductions
const int nbsize3 = blockDim.x * blockDim.y / 2;
for (int offset = blockDim.y/2; offset >= 1; offset /= 2) {
for (int offset = blockDim.y / 2; offset >= 1; offset /= 2) {
// top half write to shared memory
if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
buf[write_idx] = sum_gamma;
buf[write_idx+nbsize3] = sum_beta;
buf[write_idx + nbsize3] = sum_beta;
}
__syncthreads();
// bottom half sums
if (threadIdx.y < offset) {
const int read_idx = threadIdx.y * blockDim.x + threadIdx.x;
sum_gamma += buf[read_idx];
sum_beta += buf[read_idx+nbsize3];
sum_beta += buf[read_idx + nbsize3];
}
__syncthreads();
}
@ -514,35 +470,29 @@ void cuComputeGradGammaBeta(
}
}
template<typename T, typename U, typename V> __global__
void cuComputeGradInput(
const V* __restrict__ dout,
const T* __restrict__ input,
const int n1,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar,
U epsilon,
const V* gamma,
T* grad_input)
{
for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
template <typename T, typename U, typename V>
__global__ void cuComputeGradInput(const V* __restrict__ dout,
const T* __restrict__ input, const int n1,
const int n2, const U* __restrict__ mean,
const U* __restrict__ invvar, U epsilon,
const V* gamma, T* grad_input) {
for (auto i1 = blockIdx.y; i1 < n1; i1 += gridDim.y) {
U sum_loss1 = U(0);
U sum_loss2 = U(0);
const U c_mean = mean[i1];
const U c_invvar = invvar[i1];
const T* k_input = input + i1*n2;
const V* k_dout = dout + i1*n2;
const T* k_input = input + i1 * n2;
const V* k_dout = dout + i1 * n2;
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
if (gamma != NULL) {
int l = 4*thrx;
for (; l+3 < n2; l+=4*numx) {
int l = 4 * thrx;
for (; l + 3 < n2; l += 4 * numx) {
for (int k = 0; k < 4; ++k) {
const U c_h = static_cast<U>(k_input[l+k]);
const U c_loss = static_cast<U>(k_dout[l+k]);
sum_loss1 += c_loss * gamma[l+k];
sum_loss2 += c_loss * gamma[l+k] * (c_h - c_mean) * c_invvar;
const U c_h = static_cast<U>(k_input[l + k]);
const U c_loss = static_cast<U>(k_dout[l + k]);
sum_loss1 += c_loss * gamma[l + k];
sum_loss2 += c_loss * gamma[l + k] * (c_h - c_mean) * c_invvar;
}
}
for (; l < n2; ++l) {
@ -552,11 +502,11 @@ void cuComputeGradInput(
sum_loss2 += c_loss * gamma[l] * (c_h - c_mean) * c_invvar;
}
} else {
int l = 4*thrx;
for (; l+3 < n2; l+=4*numx) {
int l = 4 * thrx;
for (; l + 3 < n2; l += 4 * numx) {
for (int k = 0; k < 4; ++k) {
const U c_h = static_cast<U>(k_input[l+k]);
const U c_loss = static_cast<U>(k_dout[l+k]);
const U c_h = static_cast<U>(k_input[l + k]);
const U c_loss = static_cast<U>(k_dout[l + k]);
sum_loss1 += c_loss;
sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
}
@ -569,7 +519,7 @@ void cuComputeGradInput(
}
}
// intra-warp reductions
for (int mask = blockDim.x/2; mask > 0; mask /= 2) {
for (int mask = blockDim.x / 2; mask > 0; mask /= 2) {
sum_loss1 += WARP_SHFL_XOR(sum_loss1, mask);
sum_loss2 += WARP_SHFL_XOR(sum_loss2, mask);
}
@ -577,38 +527,38 @@ void cuComputeGradInput(
if (blockDim.y > 1) {
SharedMemory<U> shared;
U* buf = shared.getPointer();
for (int offset = blockDim.y/2; offset > 0; offset /= 2) {
for (int offset = blockDim.y / 2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
const int wrt_i = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
buf[2*wrt_i] = sum_loss1;
buf[2*wrt_i+1] = sum_loss2;
buf[2 * wrt_i] = sum_loss1;
buf[2 * wrt_i + 1] = sum_loss2;
}
__syncthreads();
// lower half merges
if (threadIdx.y < offset) {
const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
sum_loss1 += buf[2*read_i];
sum_loss2 += buf[2*read_i+1];
sum_loss1 += buf[2 * read_i];
sum_loss2 += buf[2 * read_i + 1];
}
__syncthreads();
}
if (threadIdx.y == 0) {
buf[2*threadIdx.x] = sum_loss1;
buf[2*threadIdx.x+1] = sum_loss2;
buf[2 * threadIdx.x] = sum_loss1;
buf[2 * threadIdx.x + 1] = sum_loss2;
}
__syncthreads();
if (threadIdx.y !=0) {
sum_loss1 = buf[2*threadIdx.x];
sum_loss2 = buf[2*threadIdx.x+1];
if (threadIdx.y != 0) {
sum_loss1 = buf[2 * threadIdx.x];
sum_loss2 = buf[2 * threadIdx.x + 1];
}
}
// all threads now have the two sums over l
U fH = (U)n2;
U term1 = (U(1) / fH) * c_invvar;
T* k_grad_input = grad_input + i1*n2;
T* k_grad_input = grad_input + i1 * n2;
if (gamma != NULL) {
for (int l = thrx; l < n2; l+=numx) {
for (int l = thrx; l < n2; l += numx) {
const U c_h = static_cast<U>(k_input[l]);
const U c_loss = static_cast<U>(k_dout[l]);
U f_grad_input = fH * c_loss * gamma[l];
@ -618,7 +568,7 @@ void cuComputeGradInput(
k_grad_input[l] = static_cast<T>(f_grad_input);
}
} else {
for (int l = thrx; l < n2; l+=numx) {
for (int l = thrx; l < n2; l += numx) {
const U c_h = static_cast<U>(k_input[l]);
const U c_loss = static_cast<U>(k_dout[l]);
U f_grad_input = fH * c_loss;
@ -631,183 +581,103 @@ void cuComputeGradInput(
}
}
template<typename T, typename U, typename V>
void HostApplyLayerNorm(
V* output,
U* mean,
U* invvar,
const T* input,
int n1,
int n2,
double epsilon,
const V* gamma,
const V* beta
)
{
template <typename T, typename U, typename V>
void HostApplyLayerNorm(V* output, U* mean, U* invvar, const T* input, int n1,
int n2, double epsilon, const V* gamma, const V* beta) {
auto stream = at::cuda::getCurrentCUDAStream().stream();
const dim3 threads(32,4,1);
const dim3 threads(32, 4, 1);
const uint64_t maxGridY =
at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
int nshared =
threads.y > 1 ?
threads.y*sizeof(U)+(threads.y/2)*sizeof(U) :
0;
threads.y > 1 ? threads.y * sizeof(U) + (threads.y / 2) * sizeof(U) : 0;
cuApplyLayerNorm<<<blocks, threads, nshared, stream>>>(
output,
mean,
invvar,
input,
n1,n2,
U(epsilon),
gamma,beta);
output, mean, invvar, input, n1, n2, U(epsilon), gamma, beta);
}
void cuda_layer_norm(
at::Tensor* output,
at::Tensor* mean,
at::Tensor* invvar,
at::Tensor* input,
int n1,
int n2,
#ifdef VERSION_GE_1_1
void cuda_layer_norm(at::Tensor* output, at::Tensor* mean, at::Tensor* invvar,
at::Tensor* input, int n1, int n2,
#ifdef VERSION_GE_1_1
at::IntArrayRef normalized_shape,
#else
#else
at::IntList normalized_shape,
#endif
at::Tensor* gamma,
at::Tensor* beta,
double epsilon)
{
#endif
at::Tensor* gamma, at::Tensor* beta, double epsilon) {
using namespace at;
DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
input->scalar_type(), output->scalar_type(), "cuda_layer_norm_kernel",
HostApplyLayerNorm(
output->DATA_PTR<scalar_t_out>(),
mean->DATA_PTR<float>(),
invvar->DATA_PTR<float>(),
input->DATA_PTR<scalar_t_in>(),
n1,n2,
epsilon,
HostApplyLayerNorm(output->DATA_PTR<scalar_t_out>(),
mean->DATA_PTR<float>(), invvar->DATA_PTR<float>(),
input->DATA_PTR<scalar_t_in>(), n1, n2, epsilon,
gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
beta != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL);
)
beta != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL);)
}
template<typename T, typename U, typename V>
void HostLayerNormGradient(
const V* dout,
const U* mean,
const U* invvar,
at::Tensor* input,
int n1,
int n2,
const V* gamma,
const V* beta,
double epsilon,
T* grad_input,
V* grad_gamma,
V* grad_beta
)
{
template <typename T, typename U, typename V>
void HostLayerNormGradient(const V* dout, const U* mean, const U* invvar,
at::Tensor* input, int n1, int n2, const V* gamma,
const V* beta, double epsilon, T* grad_input,
V* grad_gamma, V* grad_beta) {
auto stream = at::cuda::getCurrentCUDAStream().stream();
if (gamma != NULL && beta != NULL) {
// compute grad_gamma(j) and grad_beta(j)
const int part_size = 16;
const dim3 threads2(32,4,1);
const dim3 blocks2((n2+threads2.x-1)/threads2.x,part_size,1);
const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y *
(threads2.x + 1);
const dim3 threads2(32, 4, 1);
const dim3 blocks2((n2 + threads2.x - 1) / threads2.x, part_size, 1);
const int nshared2_a =
2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1);
const int nshared2_b = threads2.x * threads2.y * sizeof(U);
const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
at::Tensor part_grad_gamma = at::empty(
{part_size,n2}, input->options().dtype(at::ScalarType::Float));
{part_size, n2}, input->options().dtype(at::ScalarType::Float));
at::Tensor part_grad_beta = at::empty_like(part_grad_gamma);
cuComputePartGradGammaBeta<<<blocks2, threads2, nshared2, stream>>>(
dout,
input->DATA_PTR<T>(),
n1,n2,
mean,
invvar,
U(epsilon),
part_grad_gamma.DATA_PTR<U>(),
part_grad_beta.DATA_PTR<U>());
dout, input->DATA_PTR<T>(), n1, n2, mean, invvar, U(epsilon),
part_grad_gamma.DATA_PTR<U>(), part_grad_beta.DATA_PTR<U>());
const dim3 threads3(32,8,1);
const dim3 blocks3((n2+threads2.x-1)/threads2.x,1,1);
const dim3 threads3(32, 8, 1);
const dim3 blocks3((n2 + threads2.x - 1) / threads2.x, 1, 1);
const int nshared3 = threads3.x * threads3.y * sizeof(U);
cuComputeGradGammaBeta<<<blocks3, threads3, nshared3, stream>>>(
part_grad_gamma.DATA_PTR<U>(),
part_grad_beta.DATA_PTR<U>(),
part_size,
n1,n2,
grad_gamma,
grad_beta);
part_grad_gamma.DATA_PTR<U>(), part_grad_beta.DATA_PTR<U>(), part_size,
n1, n2, grad_gamma, grad_beta);
}
// compute grad_input
const uint64_t maxGridY =
at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1);
const dim3 threads1(32,4,1);
int nshared =
threads1.y > 1 ?
threads1.y*threads1.x*sizeof(U) :
0;
const dim3 threads1(32, 4, 1);
int nshared = threads1.y > 1 ? threads1.y * threads1.x * sizeof(U) : 0;
cuComputeGradInput<<<blocks1, threads1, nshared, stream>>>(
dout,
input->DATA_PTR<T>(),
n1,n2,
mean,
invvar,
U(epsilon),
gamma,
dout, input->DATA_PTR<T>(), n1, n2, mean, invvar, U(epsilon), gamma,
grad_input);
}
void cuda_layer_norm_gradient(
at::Tensor* dout,
at::Tensor* mean,
at::Tensor* invvar,
at::Tensor* input,
int n1,
void cuda_layer_norm_gradient(at::Tensor* dout, at::Tensor* mean,
at::Tensor* invvar, at::Tensor* input, int n1,
int n2,
#ifdef VERSION_GE_1_1
#ifdef VERSION_GE_1_1
at::IntArrayRef normalized_shape,
#else
#else
at::IntList normalized_shape,
#endif
at::Tensor* gamma,
at::Tensor* beta,
double epsilon,
at::Tensor* grad_input,
at::Tensor* grad_gamma,
at::Tensor* grad_beta)
{
#endif
at::Tensor* gamma, at::Tensor* beta,
double epsilon, at::Tensor* grad_input,
at::Tensor* grad_gamma, at::Tensor* grad_beta) {
using namespace at;
DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
input->scalar_type(), gamma->scalar_type(),
"cuda_layer_norm_gradient_kernel",
HostLayerNormGradient(
dout->DATA_PTR<scalar_t_out>(),
mean->DATA_PTR<float>(),
invvar->DATA_PTR<float>(),
input,
n1,n2,
dout->DATA_PTR<scalar_t_out>(), mean->DATA_PTR<float>(),
invvar->DATA_PTR<float>(), input, n1, n2,
// TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
// if gamma Tensor is NULL on input.
gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
gamma != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL,
epsilon,
gamma != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL, epsilon,
grad_input->DATA_PTR<scalar_t_in>(),
gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_out>() : NULL,
gamma != NULL ? grad_beta->DATA_PTR<scalar_t_out>() : NULL);
)
gamma != NULL ? grad_beta->DATA_PTR<scalar_t_out>() : NULL);)
}