mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-15 22:19:38 +00:00
[pipelinable]use pipelinable context to initialize non-pipeline model (#816)
* [CLI] add CLI launcher
* Revert "[CLI] add CLI launcher"
This reverts commit df7e6506d4
.
* [pipeline]add module lazy init feature to support large model initization.
* [pipeline]add to_layer_list and partition method to support arbitrary non-pp model
* refactor the module structure
* polish
* [pipelinable]add unit test for pipelinable
* polish
* polish
* Fix CodeFactor issues.
This commit is contained in:
64
tests/test_utils/test_pipelinable.py
Normal file
64
tests/test_utils/test_pipelinable.py
Normal file
@@ -0,0 +1,64 @@
|
||||
import os.path as osp
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from colossalai.utils.model.pipelinable import PipelinableContext
|
||||
|
||||
from functools import partial
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.testing import rerun_on_exception
|
||||
|
||||
NUM_CHUNKS = 1
|
||||
PIPELINE_SIZE = 2
|
||||
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
|
||||
def __init__(self, dim: int = 256):
|
||||
super().__init__()
|
||||
intermediate_dim = dim * 4
|
||||
self.dense_1 = torch.nn.Linear(dim, intermediate_dim)
|
||||
self.activation = torch.nn.GELU()
|
||||
self.dense_2 = torch.nn.Linear(intermediate_dim, dim)
|
||||
self.dropout = torch.nn.Dropout(0.1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.dense_1(x)
|
||||
x = self.activation(x)
|
||||
x = self.dense_2(x)
|
||||
x = self.dropout(x)
|
||||
return x
|
||||
|
||||
|
||||
def run_pipelinable(rank):
|
||||
pipelinable = PipelinableContext()
|
||||
with pipelinable:
|
||||
model = MLP()
|
||||
|
||||
assert pipelinable.policy == "balanced"
|
||||
pipelinable.load_policy("uniform")
|
||||
assert pipelinable.policy == "uniform"
|
||||
pipelinable.to_layer_list()
|
||||
|
||||
assert pipelinable.layers_count == len(list(model.children()))
|
||||
|
||||
pipeline_model_part_0 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 0)
|
||||
assert isinstance(pipeline_model_part_0, torch.nn.Module)
|
||||
pipeline_model_part_1 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 1)
|
||||
assert isinstance(pipeline_model_part_1, torch.nn.Module)
|
||||
|
||||
layers_count_in_part_0 = len(list(pipeline_model_part_0._module_list))
|
||||
layers_count_in_part_1 = len(list(pipeline_model_part_1._module_list))
|
||||
|
||||
assert layers_count_in_part_0 + layers_count_in_part_1 == pipelinable.layers_count
|
||||
|
||||
|
||||
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
|
||||
def test_pipelinable():
|
||||
mp.spawn(run_pipelinable, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_pipelinable()
|
Reference in New Issue
Block a user