mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 11:02:05 +00:00
[pipeline] add pipeline support for T5Stack/T5EncoderModel (#4300)
* modify t5 policy & add test * pipeline stage distribution for t5 * complete t5 base policy * t5 stack: halfway * modify gpt2 pipeline test * complete pipeline forward for T5Stack/T5EncoderModel * fix docstring * move t5 util tests to test_pipeline
This commit is contained in:
committed by
Hongxin Liu
parent
18ebcf406a
commit
36e546b2cc
279
colossalai/shardformer/modeling/t5.py
Normal file
279
colossalai/shardformer/modeling/t5.py
Normal file
@@ -0,0 +1,279 @@
|
||||
from functools import partial
|
||||
from types import MethodType
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions
|
||||
from transformers.models.t5.modeling_t5 import T5EncoderModel, T5ForConditionalGeneration, T5Model, T5Stack
|
||||
from transformers.utils import logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
|
||||
|
||||
class T5PipelineForwards:
|
||||
'''
|
||||
This class serves as a micro library for forward function substitution of
|
||||
T5 models under pipeline setting.
|
||||
'''
|
||||
|
||||
@staticmethod
|
||||
def t5_stack_forward(
|
||||
self: T5Stack,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
output_hidden_states: Optional[bool] = False,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
position_bias: Optional[torch.Tensor] = None,
|
||||
encoder_decoder_position_bias: Optional[torch.Tensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
decoder_starting_stage: Optional[int] = None,
|
||||
) -> Union[Dict, Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
||||
|
||||
# This function is modified on the basis of transformers.models.t5.modeling_t5.T5Stack.forward.
|
||||
# Please refer to original code of transformers for more details.
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if past_key_values:
|
||||
logger.warning_once('Non-empty past_key_values is not supported for pipeline models at the moment.')
|
||||
past_key_values = None
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if use_cache:
|
||||
logger.warning_once('use_cache=True is not supported for pipeline models at the moment.')
|
||||
use_cache = False
|
||||
if use_cache is True:
|
||||
if not in_decoder:
|
||||
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
||||
use_cache = False
|
||||
|
||||
stage = stage_manager.stage
|
||||
in_decoder = self.is_decoder
|
||||
if in_decoder != (stage >= decoder_starting_stage):
|
||||
raise ValueError("Config in T5Stack is not aligned with pipeline setting.")
|
||||
|
||||
# at_first_stage: current stage is the first stage of encoder/decoder, taking input_ids/input_embedds
|
||||
# at_last_stage: current stage is the last stage of encoder/decoder, making outputs the same form as huggingface
|
||||
at_first_stage = (stage == 0) or (stage == decoder_starting_stage)
|
||||
at_last_stage = (stage == decoder_starting_stage - 1) or (stage == stage_manager.num_stages - 1)
|
||||
|
||||
# Process inputs if at the first stage of encoder/decoder.
|
||||
if at_first_stage:
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
err_msg_prefix = "decoder_" if in_decoder else ""
|
||||
raise ValueError(
|
||||
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
||||
)
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
err_msg_prefix = "decoder_" if in_decoder else ""
|
||||
raise ValueError(
|
||||
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
||||
if inputs_embeds is None:
|
||||
if self.embed_tokens is None:
|
||||
raise ValueError("You have to initialize the model with valid token embeddings")
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
batch_size, seq_length = input_shape
|
||||
device = inputs_embeds.device
|
||||
hidden_states = self.dropout(inputs_embeds)
|
||||
else:
|
||||
if hidden_states is None:
|
||||
raise ValueError(
|
||||
"hidden_states shouldn't be None for stages other than the first stage of encoder/decoder.")
|
||||
input_shape = hidden_states.size()[:-1]
|
||||
batch_size, seq_length = input_shape[0], input_shape[1]
|
||||
device = hidden_states.device
|
||||
|
||||
# required mask seq length can be calculated via length of past
|
||||
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones(batch_size, mask_seq_length, device=device)
|
||||
if in_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
|
||||
encoder_seq_length = encoder_hidden_states.shape[1]
|
||||
encoder_attention_mask = torch.ones(batch_size, encoder_seq_length, device=device, dtype=torch.long)
|
||||
|
||||
# initialize past_key_values with `None` if past does not exist
|
||||
if past_key_values is None:
|
||||
past_key_values = [None] * len(self.block)
|
||||
|
||||
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||||
# ourselves in which case we just need to make it broadcastable to all heads.
|
||||
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
||||
|
||||
# If a 2D or 3D attention mask is provided for the cross-attention
|
||||
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||||
if self.is_decoder and encoder_hidden_states is not None:
|
||||
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
||||
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
||||
if encoder_attention_mask is None:
|
||||
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
|
||||
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||||
else:
|
||||
encoder_extended_attention_mask = None
|
||||
|
||||
# Prepare head mask if needed
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
||||
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
||||
present_key_value_states = () if use_cache else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_attentions = () if output_attentions else None
|
||||
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
||||
|
||||
# Going through held blocks.
|
||||
start_idx, end_idx = stage_index[0], stage_index[1]
|
||||
|
||||
for i in range(start_idx, end_idx):
|
||||
|
||||
past_key_value = past_key_values[i]
|
||||
layer_module = self.block[i]
|
||||
layer_head_mask = head_mask[i]
|
||||
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
||||
torch.cuda.set_device(hidden_states.device)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
|
||||
def custom_forward(*inputs):
|
||||
return tuple(module(*inputs, use_cache, output_attentions))
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = checkpoint(
|
||||
create_custom_forward(layer_module),
|
||||
hidden_states,
|
||||
extended_attention_mask,
|
||||
position_bias,
|
||||
encoder_hidden_states,
|
||||
encoder_extended_attention_mask,
|
||||
encoder_decoder_position_bias,
|
||||
layer_head_mask,
|
||||
cross_attn_layer_head_mask,
|
||||
None, # past_key_value is always None with gradient checkpointing
|
||||
)
|
||||
else:
|
||||
layer_outputs = layer_module(
|
||||
hidden_states,
|
||||
attention_mask=extended_attention_mask,
|
||||
position_bias=position_bias,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_extended_attention_mask,
|
||||
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
||||
layer_head_mask=layer_head_mask,
|
||||
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
||||
past_key_value=past_key_value,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
# layer_outputs is a tuple with:
|
||||
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
||||
|
||||
if use_cache is False or use_cache is None:
|
||||
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
||||
hidden_states, present_key_value_state = layer_outputs[:2]
|
||||
# print(stage, len(layer_outputs), present_key_value_state.shape)
|
||||
|
||||
# We share the position biases between the layers - the first layer store them
|
||||
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
||||
# (cross-attention position bias), (cross-attention weights)
|
||||
position_bias = layer_outputs[2]
|
||||
|
||||
if self.is_decoder and encoder_hidden_states is not None:
|
||||
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
||||
# append next layer key value states
|
||||
if use_cache:
|
||||
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
||||
|
||||
# last layer
|
||||
if at_last_stage:
|
||||
hidden_states = self.final_layer_norm(hidden_states)
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [
|
||||
hidden_states,
|
||||
present_key_value_states,
|
||||
all_hidden_states,
|
||||
all_attentions,
|
||||
all_cross_attentions,
|
||||
] if v is not None)
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=present_key_value_states,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_attentions,
|
||||
cross_attentions=all_cross_attentions,
|
||||
)
|
||||
else:
|
||||
return {
|
||||
'hidden_states': hidden_states,
|
||||
'position_bias': position_bias,
|
||||
'encoder_decoder_position_bias': encoder_decoder_position_bias
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def t5_encoder_model_forward(
|
||||
self: T5EncoderModel,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
position_bias: Optional[torch.Tensor] = None,
|
||||
encoder_decoder_position_bias: Optional[torch.Tensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
decoder_starting_stage: Optional[int] = None,
|
||||
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
|
||||
r"""
|
||||
This function is modified on the basis of transformers.models.t5.modeling_gpt2.T5EncoderModel.forward.
|
||||
Please refer to original code of transformers for more details.
|
||||
```"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = T5PipelineForwards.t5_stack_forward(self.encoder,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
head_mask=head_mask,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
position_bias=position_bias,
|
||||
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
||||
stage_index=stage_index,
|
||||
decoder_starting_stage=decoder_starting_stage)
|
||||
|
||||
return outputs
|
Reference in New Issue
Block a user