fix sharded param hook and unit test

This commit is contained in:
ver217
2022-03-04 13:40:48 +08:00
committed by Frank Lee
parent 001ca624dd
commit 36f9a74ab2
6 changed files with 49 additions and 66 deletions

View File

@@ -3,37 +3,21 @@ from functools import partial
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.logging import get_dist_logger
from colossalai.utils import checkpoint
LOGGER = get_dist_logger()
CONFIG = dict(
fp16=dict(
mode=None,
),
zero=dict(
level=3,
verbose=False,
offload_optimizer_config=dict(
device='cpu',
pin_memory=True,
buffer_count=5,
fast_init=False
),
offload_param_config=dict(
device='cpu',
pin_memory=True,
buffer_count=5,
buffer_size=1e8,
max_in_cpu=1e9
)
),
parallel=dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None)
)
)
CONFIG = dict(fp16=dict(mode=None,),
zero=dict(level=3,
verbose=False,
offload_optimizer_config=dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False),
offload_param_config=dict(device='cpu',
pin_memory=True,
buffer_count=5,
buffer_size=1e8,
max_in_cpu=1e9)),
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)))
def checkpoint_wrapper(module, enable=True):
@@ -43,6 +27,7 @@ def checkpoint_wrapper(module, enable=True):
class Net(nn.Module):
def __init__(self, checkpoint=False) -> None:
super().__init__()
self.fc1 = nn.Linear(5, 5)
@@ -50,13 +35,7 @@ class Net(nn.Module):
self.fc3 = nn.Linear(5, 1)
if checkpoint:
self.fc1 = checkpoint_wrapper(self.fc1)
self.layers = [
self.fc1,
self.fc2,
self.fc1,
self.fc2,
self.fc3
]
self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3]
def forward(self, x):
for layer in self.layers:
@@ -111,3 +90,17 @@ def check_params_padding(model, zero_model, loose=False):
zero_p = zero_p[:p.size(0)]
assert p.dtype == zero_p.dtype
assert allclose(p, zero_p, loose=loose)
def check_sharded_params_padding(model, zero_model, loose=False):
rank = dist.get_rank()
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_p = zero_p.ca_attr.payload(p.device)
chunks = torch.flatten(p).chunk(dist.get_world_size())
if rank >= len(chunks):
continue
p = chunks[rank]
if zero_p.size(0) > p.size(0):
zero_p = zero_p[:p.size(0)]
assert p.dtype == zero_p.dtype
assert allclose(p, zero_p, loose=loose)

View File

@@ -16,19 +16,18 @@ from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from torch.optim import Adam
from common import (CONFIG, Net, check_grads, check_grads_padding, check_params, check_params_padding)
from common import (CONFIG, Net, check_grads, check_grads_padding, check_params, check_sharded_params_padding)
def run_step(model, optimizer, x, enable_autocast=False):
model.train()
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=enable_autocast):
y = model(x)
loss = y.sum()
loss = loss.float()
if isinstance(model, ShardedModelV2):
optimizer.backward(loss)
for p in model.parameters():
assert p.ca_attr.is_sharded
else:
loss.backward()
optimizer.step()
@@ -51,7 +50,7 @@ def run_dist(rank, world_size, port):
run_step(model, optim, x, False)
if dist.get_world_size() > 1:
check_grads_padding(model, zero_model)
check_params_padding(model, zero_model)
check_sharded_params_padding(model, zero_model)
else:
check_grads(model, zero_model)
check_params(model, zero_model)