fix metric calculation

This commit is contained in:
YeAnbang
2025-05-20 18:14:05 +08:00
parent 116621d004
commit 37663386bc
4 changed files with 147 additions and 48 deletions

View File

@@ -120,24 +120,85 @@ class BaseConsumer:
raw_batch = unbind_batch(
ray_broadcast_tensor_dict(None, src=0, device=self.device, group_name=f"sync_data_{r}")
)
processed_batch = [
self.prompt_level_filtering(self.calculate_group_reward(group)) for group in raw_batch
]
filtered_batch = [t for t in processed_batch if t is not None]
recv_effective_count = 0
# calculate group reward et al. filtering. As only the filtered group will be used for training (which is incomplete),
# we need to calculate the metrics before filtering here for logging
for group in raw_batch:
group_with_reward = self.calculate_group_reward(group)
group_reward_mean = group_with_reward["reward"].mean().cpu().item()
group_format_acc_mean = group_with_reward["format_acc"].mean().cpu().item()
group_ans_acc_mean = group_with_reward["ans_acc"].mean().cpu().item()
group_response_len = (
(
group_with_reward["response_idx"][:, 1]
- group_with_reward["response_idx"][:, 0]
+ 1
)
.type(torch.float32)
.mean()
.cpu()
.item()
)
filtered_group = self.prompt_level_filtering(group_with_reward)
recv_effective_count += 1 if filtered_group is not None else 0
self.buffer.append(
[
filtered_group,
group_reward_mean,
group_format_acc_mean,
group_ans_acc_mean,
group_response_len,
]
)
if self.filter_range is not None:
print(
f"[T{dist.get_rank()}] Filter recv data: {len(processed_batch)} -> {len(filtered_batch)}"
f"[T{dist.get_rank()}] Filter recv data: {len(raw_batch)} -> {recv_effective_count}"
)
# mapping the effective group to the raw group for indexing
effective_group_to_raw_group_mapping = {}
for buffer_idx in range(len(self.buffer)):
if self.buffer[buffer_idx][0] is not None:
effective_group_to_raw_group_mapping[len(effective_group_to_raw_group_mapping)] = (
buffer_idx
)
self.buffer.extend(filtered_batch)
while len(self.buffer) >= self.dp_size * self.minibatch_size:
batches = self.buffer[
self.dp_rank * self.minibatch_size : (self.dp_rank + 1) * self.minibatch_size
while len(effective_group_to_raw_group_mapping) >= self.dp_size * self.minibatch_size:
# on each dp_rank, we use minibatch_size effective samples to form a batch
batches = [
self.buffer[effective_group_to_raw_group_mapping[i]]
for i in range(
self.dp_rank * self.minibatch_size, (self.dp_rank + 1) * self.minibatch_size
)
]
batch = bind_batch(batches)
# every dp_rank will receive a complete mini-batch, no need to sync within step() later
# each mini-batch use the first self.dp_size * minibatch_size effective samples
raw_mini_batches = self.buffer[
: effective_group_to_raw_group_mapping[self.dp_size * self.minibatch_size - 1] + 1
] # include the last effective sample
raw_mini_batches_metric_dict = {
"raw_train_mini_batch_reward": [t[1] for t in raw_mini_batches],
"raw_train_mini_batch_format_acc": [t[2] for t in raw_mini_batches],
"raw_train_mini_batch_ans_acc": [t[3] for t in raw_mini_batches],
"raw_train_mini_batch_response_len": [t[4] for t in raw_mini_batches],
}
batch = bind_batch([t[0] for t in batches])
batch = post_recv(batch)
loss = self.step(i, pbar, **batch)
self.buffer = self.buffer[self.dp_size * self.minibatch_size :]
loss = self.step(i, pbar, **batch, **raw_mini_batches_metric_dict)
self.buffer = self.buffer[
effective_group_to_raw_group_mapping[self.dp_size * self.minibatch_size - 1] + 1 :
]
# recalculate the effective group to raw group mapping
effective_group_to_raw_group_mapping_size_before = len(effective_group_to_raw_group_mapping)
effective_group_to_raw_group_mapping = {}
for buffer_idx in range(len(self.buffer)):
if self.buffer[buffer_idx][0] is not None:
effective_group_to_raw_group_mapping[len(effective_group_to_raw_group_mapping)] = (
buffer_idx
)
assert (
len(effective_group_to_raw_group_mapping)
== effective_group_to_raw_group_mapping_size_before - self.dp_size * self.minibatch_size
)
if loss is not None:
pbar.set_postfix({"loss": loss})
i += 1