mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-31 16:40:41 +00:00
[Refactor] Integrated some lightllm kernels into token-attention (#4946)
* add some req for inference * clean codes * add codes * add some lightllm deps * clean codes * hello * delete rms files * add some comments * add comments * add doc * add lightllm deps * add lightllm cahtglm2 kernels * add lightllm cahtglm2 kernels * replace rotary embedding with lightllm kernel * add some commnets * add some comments * add some comments * add * replace fwd kernel att1 * fix a arg * add * add * fix token attention * add some comments * clean codes * modify comments * fix readme * fix bug * fix bug --------- Co-authored-by: cuiqing.li <lixx336@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497@outlook.com>
This commit is contained in:
@@ -9,26 +9,21 @@ except ImportError:
|
||||
|
||||
# There may exist import error even if we have triton installed.
|
||||
if HAS_TRITON:
|
||||
from .context_attention import bloom_context_attn_fwd, llama2_context_attn_fwd, llama_context_attn_fwd
|
||||
from .context_attention import bloom_context_attn_fwd, llama_context_attn_fwd
|
||||
from .copy_kv_cache_dest import copy_kv_cache_to_dest
|
||||
from .fused_layernorm import layer_norm
|
||||
from .gptq_triton import gptq_fused_linear_triton
|
||||
from .int8_rotary_embedding_kernel import int8_rotary_embedding_fwd
|
||||
from .rms_norm import rmsnorm_forward
|
||||
from .rotary_embedding_kernel import rotary_embedding_fwd
|
||||
from .smooth_attention import smooth_llama_context_attn_fwd, smooth_token_attention_fwd
|
||||
from .softmax import softmax
|
||||
from .token_attention_kernel import token_attention_fwd
|
||||
|
||||
__all__ = [
|
||||
"llama_context_attn_fwd",
|
||||
"llama2_context_attn_fwd",
|
||||
"bloom_context_attn_fwd",
|
||||
"softmax",
|
||||
"layer_norm",
|
||||
"rmsnorm_forward",
|
||||
"copy_kv_cache_to_dest",
|
||||
"rotary_embedding_fwd",
|
||||
"token_attention_fwd",
|
||||
"gptq_fused_linear_triton",
|
||||
"int8_rotary_embedding_fwd",
|
||||
|
@@ -238,329 +238,5 @@ if HAS_TRITON:
|
||||
num_warps=num_warps,
|
||||
num_stages=1,
|
||||
)
|
||||
return
|
||||
|
||||
@triton.jit
|
||||
def _fwd_kernel_latest(
|
||||
Q,
|
||||
K,
|
||||
V,
|
||||
sm_scale,
|
||||
B_Start_Loc,
|
||||
B_Seqlen,
|
||||
Out,
|
||||
stride_qbs,
|
||||
stride_qh,
|
||||
stride_qd,
|
||||
stride_kbs,
|
||||
stride_kh,
|
||||
stride_kd,
|
||||
stride_vbs,
|
||||
stride_vh,
|
||||
stride_vd,
|
||||
stride_obs,
|
||||
stride_oh,
|
||||
stride_od,
|
||||
kv_group_num,
|
||||
BLOCK_M: tl.constexpr,
|
||||
BLOCK_DMODEL: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
):
|
||||
cur_batch = tl.program_id(0)
|
||||
cur_head = tl.program_id(1)
|
||||
start_m = tl.program_id(2)
|
||||
|
||||
cur_kv_head = cur_head // kv_group_num
|
||||
|
||||
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
||||
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
|
||||
|
||||
block_start_loc = BLOCK_M * start_m
|
||||
|
||||
# initialize offsets
|
||||
offs_n = tl.arange(0, BLOCK_N)
|
||||
offs_d = tl.arange(0, BLOCK_DMODEL)
|
||||
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
||||
off_q = (
|
||||
(cur_batch_in_all_start_index + offs_m[:, None]) * stride_qbs
|
||||
+ cur_head * stride_qh
|
||||
+ offs_d[None, :] * stride_qd
|
||||
)
|
||||
off_k = offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh + offs_d[:, None] * stride_kd
|
||||
off_v = offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh + offs_d[None, :] * stride_vd
|
||||
|
||||
q = tl.load(Q + off_q, mask=offs_m[:, None] < cur_batch_seq_len, other=0.0)
|
||||
|
||||
k_ptrs = K + off_k
|
||||
v_ptrs = V + off_v
|
||||
|
||||
# initialize pointer to m and l
|
||||
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
||||
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
||||
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
||||
|
||||
block_mask = tl.where(block_start_loc < cur_batch_seq_len, 1, 0)
|
||||
|
||||
for start_n in range(0, block_mask * (start_m + 1) * BLOCK_M, BLOCK_N):
|
||||
start_n = tl.multiple_of(start_n, BLOCK_N)
|
||||
# -- compute qk ----
|
||||
k = tl.load(
|
||||
k_ptrs + (cur_batch_in_all_start_index + start_n) * stride_kbs,
|
||||
mask=(start_n + offs_n[None, :]) < cur_batch_seq_len,
|
||||
other=0.0,
|
||||
)
|
||||
# mask = tl.load(mask_ptrs + start_n, mask=start_n + offs_n < cur_batch_end_loc, other=0.0)
|
||||
|
||||
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
||||
qk += tl.dot(q, k)
|
||||
qk *= sm_scale
|
||||
qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf"))
|
||||
|
||||
# -- compute m_ij, p, l_ij
|
||||
m_ij = tl.max(qk, 1)
|
||||
p = tl.exp(qk - m_ij[:, None])
|
||||
l_ij = tl.sum(p, 1)
|
||||
# -- update m_i and l_i
|
||||
m_i_new = tl.maximum(m_i, m_ij)
|
||||
alpha = tl.exp(m_i - m_i_new)
|
||||
beta = tl.exp(m_ij - m_i_new)
|
||||
l_i_new = alpha * l_i + beta * l_ij
|
||||
# -- update output accumulator --
|
||||
# scale p
|
||||
p_scale = beta / l_i_new
|
||||
p = p * p_scale[:, None]
|
||||
# scale acc
|
||||
acc_scale = l_i / l_i_new * alpha
|
||||
acc = acc * acc_scale[:, None]
|
||||
# update acc
|
||||
v = tl.load(
|
||||
v_ptrs + (cur_batch_in_all_start_index + start_n) * stride_vbs,
|
||||
mask=(start_n + offs_n[:, None]) < cur_batch_seq_len,
|
||||
other=0.0,
|
||||
)
|
||||
|
||||
p = p.to(v.dtype)
|
||||
acc += tl.dot(p, v)
|
||||
# update m_i and l_i
|
||||
l_i = l_i_new
|
||||
m_i = m_i_new
|
||||
# initialize pointers to output
|
||||
off_o = (
|
||||
(cur_batch_in_all_start_index + offs_m[:, None]) * stride_obs
|
||||
+ cur_head * stride_oh
|
||||
+ offs_d[None, :] * stride_od
|
||||
)
|
||||
out_ptrs = Out + off_o
|
||||
tl.store(out_ptrs, acc, mask=offs_m[:, None] < cur_batch_seq_len)
|
||||
return
|
||||
|
||||
@triton.jit
|
||||
def _fwd_kernel_old(
|
||||
Q,
|
||||
K,
|
||||
V,
|
||||
sm_scale,
|
||||
B_Start_Loc,
|
||||
B_Seqlen,
|
||||
TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
||||
Out,
|
||||
stride_qbs,
|
||||
stride_qh,
|
||||
stride_qd,
|
||||
stride_kbs,
|
||||
stride_kh,
|
||||
stride_kd,
|
||||
stride_vbs,
|
||||
stride_vh,
|
||||
stride_vd,
|
||||
stride_obs,
|
||||
stride_oh,
|
||||
stride_od,
|
||||
stride_tmp_b,
|
||||
stride_tmp_h,
|
||||
stride_tmp_s,
|
||||
kv_group_num,
|
||||
BLOCK_M: tl.constexpr,
|
||||
BLOCK_DMODEL: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
):
|
||||
cur_batch = tl.program_id(0)
|
||||
cur_head = tl.program_id(1)
|
||||
start_m = tl.program_id(2)
|
||||
|
||||
cur_kv_head = cur_head // kv_group_num
|
||||
|
||||
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
||||
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
|
||||
|
||||
block_start_loc = BLOCK_M * start_m
|
||||
|
||||
# initialize offsets
|
||||
offs_n = tl.arange(0, BLOCK_N)
|
||||
offs_d = tl.arange(0, BLOCK_DMODEL)
|
||||
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
||||
off_q = (
|
||||
(cur_batch_in_all_start_index + offs_m[:, None]) * stride_qbs
|
||||
+ cur_head * stride_qh
|
||||
+ offs_d[None, :] * stride_qd
|
||||
)
|
||||
off_k = offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh + offs_d[:, None] * stride_kd
|
||||
off_v = offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh + offs_d[None, :] * stride_vd
|
||||
q = tl.load(Q + off_q, mask=offs_m[:, None] < cur_batch_seq_len, other=0.0)
|
||||
|
||||
k_ptrs = K + off_k
|
||||
v_ptrs = V + off_v
|
||||
|
||||
t_ptrs = TMP + cur_batch * stride_tmp_b + cur_head * stride_tmp_h + offs_m * stride_tmp_s
|
||||
# t_ptrs = TMP + offs_m
|
||||
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
||||
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
||||
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
||||
|
||||
block_mask = tl.where(block_start_loc < cur_batch_seq_len, 1, 0)
|
||||
|
||||
for start_n in range(0, block_mask * (start_m + 1) * BLOCK_M, BLOCK_N):
|
||||
start_n = tl.multiple_of(start_n, BLOCK_N)
|
||||
# -- compute qk ----
|
||||
k = tl.load(
|
||||
k_ptrs + (cur_batch_in_all_start_index + start_n) * stride_kbs,
|
||||
mask=(start_n + offs_n[None, :]) < cur_batch_seq_len,
|
||||
other=0.0,
|
||||
)
|
||||
|
||||
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
||||
qk += tl.dot(q, k)
|
||||
qk *= sm_scale
|
||||
qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf"))
|
||||
|
||||
m_ij = tl.max(qk, 1)
|
||||
p = tl.exp(qk - m_ij[:, None])
|
||||
l_ij = tl.sum(p, 1)
|
||||
# -- update m_i and l_i
|
||||
m_i_new = tl.maximum(m_i, m_ij)
|
||||
alpha = tl.exp(m_i - m_i_new)
|
||||
beta = tl.exp(m_ij - m_i_new)
|
||||
l_i_new = alpha * l_i + beta * l_ij
|
||||
# -- update output accumulator --
|
||||
# scale p
|
||||
p_scale = beta / l_i_new
|
||||
p = p * p_scale[:, None]
|
||||
# scale acc
|
||||
acc_scale = l_i / l_i_new * alpha
|
||||
tl.store(t_ptrs, acc_scale)
|
||||
acc_scale = tl.load(t_ptrs) # BUG: have to store and immediately load
|
||||
acc = acc * acc_scale[:, None]
|
||||
# update acc
|
||||
v = tl.load(
|
||||
v_ptrs + (cur_batch_in_all_start_index + start_n) * stride_vbs,
|
||||
mask=(start_n + offs_n[:, None]) < cur_batch_seq_len,
|
||||
other=0.0,
|
||||
)
|
||||
|
||||
p = p.to(v.dtype)
|
||||
acc += tl.dot(p, v)
|
||||
# update m_i and l_i
|
||||
l_i = l_i_new
|
||||
m_i = m_i_new
|
||||
# initialize pointers to output
|
||||
off_o = (
|
||||
(cur_batch_in_all_start_index + offs_m[:, None]) * stride_obs
|
||||
+ cur_head * stride_oh
|
||||
+ offs_d[None, :] * stride_od
|
||||
)
|
||||
out_ptrs = Out + off_o
|
||||
tl.store(out_ptrs, acc, mask=offs_m[:, None] < cur_batch_seq_len)
|
||||
|
||||
return
|
||||
|
||||
@torch.no_grad()
|
||||
def llama2_context_attn_fwd(q, k, v, o, b_start_loc, b_seq_len, max_input_len):
|
||||
if triton.__version__ >= "2.1.0":
|
||||
BLOCK = 128
|
||||
# shape constraints
|
||||
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
|
||||
assert Lq == Lk and Lk == Lv
|
||||
assert Lk in {16, 32, 64, 128}
|
||||
sm_scale = 1.0 / (Lq**0.5) # 计算scale系数
|
||||
batch, head = b_seq_len.shape[0], q.shape[1]
|
||||
kv_group_num = q.shape[1] // k.shape[1]
|
||||
|
||||
grid = (batch, head, triton.cdiv(max_input_len, BLOCK)) # batch, head,
|
||||
|
||||
num_warps = 4 if Lk <= 64 else 8
|
||||
_fwd_kernel_latest[grid](
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
sm_scale,
|
||||
b_start_loc,
|
||||
b_seq_len,
|
||||
o,
|
||||
q.stride(0),
|
||||
q.stride(1),
|
||||
q.stride(2),
|
||||
k.stride(0),
|
||||
k.stride(1),
|
||||
k.stride(2),
|
||||
v.stride(0),
|
||||
v.stride(1),
|
||||
v.stride(2),
|
||||
o.stride(0),
|
||||
o.stride(1),
|
||||
o.stride(2),
|
||||
kv_group_num=kv_group_num,
|
||||
BLOCK_M=BLOCK,
|
||||
BLOCK_DMODEL=Lk,
|
||||
BLOCK_N=BLOCK,
|
||||
num_warps=num_warps,
|
||||
num_stages=1,
|
||||
)
|
||||
return
|
||||
|
||||
elif triton.__version__ == "2.0.0":
|
||||
BLOCK = 128
|
||||
# shape constraints
|
||||
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
|
||||
assert Lq == Lk and Lk == Lv
|
||||
assert Lk in {16, 32, 64, 128}
|
||||
|
||||
sm_scale = 1.0 / (Lq**0.5)
|
||||
batch, head = b_seq_len.shape[0], q.shape[1]
|
||||
kv_group_num = q.shape[1] // k.shape[1]
|
||||
|
||||
grid = (batch, head, triton.cdiv(max_input_len, BLOCK))
|
||||
tmp = torch.empty((batch, head, max_input_len + 256), device=q.device, dtype=torch.float32)
|
||||
num_warps = 4 if Lk <= 64 else 8
|
||||
# num_warps = 4
|
||||
_fwd_kernel_old[grid](
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
sm_scale,
|
||||
b_start_loc,
|
||||
b_seq_len,
|
||||
tmp,
|
||||
o,
|
||||
q.stride(0),
|
||||
q.stride(1),
|
||||
q.stride(2),
|
||||
k.stride(0),
|
||||
k.stride(1),
|
||||
k.stride(2),
|
||||
v.stride(0),
|
||||
v.stride(1),
|
||||
v.stride(2),
|
||||
o.stride(0),
|
||||
o.stride(1),
|
||||
o.stride(2),
|
||||
tmp.stride(0),
|
||||
tmp.stride(1),
|
||||
tmp.stride(2),
|
||||
kv_group_num=kv_group_num,
|
||||
BLOCK_M=BLOCK,
|
||||
BLOCK_DMODEL=Lk,
|
||||
BLOCK_N=BLOCK,
|
||||
num_warps=num_warps,
|
||||
num_stages=1,
|
||||
)
|
||||
return
|
||||
|
||||
return
|
@@ -11,6 +11,7 @@ except ImportError:
|
||||
|
||||
if HAS_TRITON:
|
||||
|
||||
# adapted from https://github.com/ModelTC/lightllm/blob/5c559dd7981ed67679a08a1e09a88fb4c1550b3a/lightllm/common/triton_kernel/destindex_copy_kv.py
|
||||
@triton.jit
|
||||
def _fwd_copy_kv_cache_dest(
|
||||
kv_cache_ptr,
|
||||
@@ -42,6 +43,7 @@ if HAS_TRITON:
|
||||
tl.store(o_ptrs, k, mask=offs_h[:, None] < head_num)
|
||||
return
|
||||
|
||||
# adepted from https://github.com/ModelTC/lightllm/blob/5c559dd7981ed67679a08a1e09a88fb4c1550b3a/lightllm/common/triton_kernel/destindex_copy_kv.py
|
||||
@torch.no_grad()
|
||||
def copy_kv_cache_to_dest(k_ptr, dest_index_ptr, out):
|
||||
seq_len = dest_index_ptr.shape[0]
|
||||
|
@@ -1,71 +0,0 @@
|
||||
import torch
|
||||
|
||||
try:
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
HAS_TRITON = True
|
||||
except ImportError:
|
||||
HAS_TRITON = False
|
||||
print("please install triton from https://github.com/openai/triton")
|
||||
|
||||
|
||||
if HAS_TRITON:
|
||||
"""
|
||||
this kernel function is modified from
|
||||
https://github.com/ModelTC/lightllm/blob/main/lightllm/models/llama/triton_kernel/rmsnorm.py
|
||||
"""
|
||||
|
||||
@triton.jit
|
||||
def _rms_norm_fwd_fused(
|
||||
X, # pointer to the input
|
||||
Y, # pointer to the output
|
||||
W, # pointer to the weights
|
||||
stride, # how much to increase the pointer when moving by 1 row
|
||||
N, # number of columns in X
|
||||
eps, # epsilon to avoid division by zero
|
||||
BLOCK_SIZE: tl.constexpr,
|
||||
):
|
||||
# Map the program id to the row of X and Y it should compute.
|
||||
row = tl.program_id(0)
|
||||
Y += row * stride
|
||||
X += row * stride
|
||||
# Compute variance
|
||||
_var = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
|
||||
for off in range(0, N, BLOCK_SIZE):
|
||||
cols = off + tl.arange(0, BLOCK_SIZE)
|
||||
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
|
||||
_var += x * x
|
||||
var = tl.sum(_var, axis=0) / N
|
||||
rstd = 1 / tl.sqrt(var + eps)
|
||||
# Normalize and apply linear transformation
|
||||
for off in range(0, N, BLOCK_SIZE):
|
||||
cols = off + tl.arange(0, BLOCK_SIZE)
|
||||
mask = cols < N
|
||||
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
||||
x = tl.load(X + cols, mask=mask, other=0.0).to(tl.float32)
|
||||
x_hat = x * rstd
|
||||
y = x_hat * w
|
||||
# Write output
|
||||
tl.store(Y + cols, y.to(tl.float16), mask=mask)
|
||||
|
||||
def rmsnorm_forward(x, weight, eps):
|
||||
# allocate output
|
||||
y = torch.empty_like(x)
|
||||
# reshape input data into 2D tensor
|
||||
x_arg = x.view(-1, x.shape[-1])
|
||||
M, N = x_arg.shape
|
||||
# Less than 64KB per feature: enqueue fused kernel
|
||||
MAX_FUSED_SIZE = 65536 // x.element_size()
|
||||
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
||||
# print("BLOCK_SIZE:", BLOCK_SIZE)
|
||||
if N > BLOCK_SIZE:
|
||||
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
||||
# heuristics for number of warps
|
||||
num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
|
||||
# print(BLOCK_SIZE, num_warps, "block_size, numwarps")
|
||||
BLOCK_SIZE = 128 * 2 * 2 * 2 * 2 * 2 * 2 * 2
|
||||
num_warps = 8
|
||||
# enqueue kernel
|
||||
_rms_norm_fwd_fused[(M,)](x_arg, y, weight, x_arg.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
|
||||
return y
|
@@ -1,212 +0,0 @@
|
||||
# Adapted from ModelTC https://github.com/ModelTC/lightllm
|
||||
import torch
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
|
||||
@triton.jit
|
||||
def _rotary_kernel(
|
||||
q,
|
||||
Cos,
|
||||
Sin,
|
||||
q_bs_stride,
|
||||
q_h_stride,
|
||||
q_d_stride,
|
||||
cos_bs_stride,
|
||||
cos_d_stride,
|
||||
total_len,
|
||||
HEAD_NUM: tl.constexpr,
|
||||
BLOCK_HEAD: tl.constexpr,
|
||||
BLOCK_SEQ: tl.constexpr,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
):
|
||||
current_head_index = tl.program_id(0)
|
||||
current_seq_index = tl.program_id(1)
|
||||
|
||||
current_head_range = current_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)
|
||||
current_seq_range = current_seq_index * BLOCK_SEQ + tl.arange(0, BLOCK_SEQ)
|
||||
|
||||
dim_range0 = tl.arange(0, HEAD_DIM // 2)
|
||||
dim_range1 = tl.arange(HEAD_DIM // 2, HEAD_DIM)
|
||||
|
||||
off_q0 = (
|
||||
current_seq_range[:, None, None] * q_bs_stride
|
||||
+ current_head_range[None, :, None] * q_h_stride
|
||||
+ dim_range0[None, None, :] * q_d_stride
|
||||
)
|
||||
off_q1 = (
|
||||
current_seq_range[:, None, None] * q_bs_stride
|
||||
+ current_head_range[None, :, None] * q_h_stride
|
||||
+ dim_range1[None, None, :] * q_d_stride
|
||||
)
|
||||
|
||||
off_dimcos_sin = current_seq_range[:, None, None] * cos_bs_stride + dim_range0[None, None, :] * cos_d_stride
|
||||
|
||||
q0 = tl.load(
|
||||
q + off_q0,
|
||||
mask=(current_seq_range[:, None, None] < total_len) & (current_head_range[None, :, None] < HEAD_NUM),
|
||||
other=0.0,
|
||||
)
|
||||
q1 = tl.load(
|
||||
q + off_q1,
|
||||
mask=(current_seq_range[:, None, None] < total_len) & (current_head_range[None, :, None] < HEAD_NUM),
|
||||
other=0.0,
|
||||
)
|
||||
|
||||
cos = tl.load(Cos + off_dimcos_sin, mask=current_seq_range[:, None, None] < total_len, other=0.0)
|
||||
sin = tl.load(Sin + off_dimcos_sin, mask=current_seq_range[:, None, None] < total_len, other=0.0)
|
||||
|
||||
out0 = q0 * cos - q1 * sin
|
||||
out1 = q0 * sin + q1 * cos
|
||||
|
||||
tl.store(
|
||||
q + off_q0,
|
||||
out0,
|
||||
mask=(current_seq_range[:, None, None] < total_len) & (current_head_range[None, :, None] < HEAD_NUM),
|
||||
)
|
||||
tl.store(
|
||||
q + off_q1,
|
||||
out1,
|
||||
mask=(current_seq_range[:, None, None] < total_len) & (current_head_range[None, :, None] < HEAD_NUM),
|
||||
)
|
||||
|
||||
return
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def rotary_embedding_fwd(q, cos, sin):
|
||||
total_len = q.shape[0]
|
||||
head_num = q.shape[1]
|
||||
head_dim = q.shape[2]
|
||||
assert q.shape[0] == cos.shape[0] and q.shape[0] == sin.shape[0], f"q shape {q.shape} cos shape {cos.shape}"
|
||||
BLOCK_HEAD = 4
|
||||
BLOCK_SEQ = 32
|
||||
grid = (triton.cdiv(head_num, BLOCK_HEAD), triton.cdiv(total_len, BLOCK_SEQ))
|
||||
if head_dim >= 128:
|
||||
num_warps = 8
|
||||
else:
|
||||
num_warps = 4
|
||||
|
||||
_rotary_kernel[grid](
|
||||
q,
|
||||
cos,
|
||||
sin,
|
||||
q.stride(0),
|
||||
q.stride(1),
|
||||
q.stride(2),
|
||||
cos.stride(0),
|
||||
cos.stride(1),
|
||||
total_len,
|
||||
HEAD_NUM=head_num,
|
||||
BLOCK_HEAD=BLOCK_HEAD,
|
||||
BLOCK_SEQ=BLOCK_SEQ,
|
||||
HEAD_DIM=head_dim,
|
||||
num_warps=num_warps,
|
||||
num_stages=1,
|
||||
)
|
||||
return
|
||||
|
||||
|
||||
class Llama2Forwards:
|
||||
@staticmethod
|
||||
@triton.jit
|
||||
def _rotary_kernel(
|
||||
Q,
|
||||
Cos,
|
||||
Sin,
|
||||
stride_qbs,
|
||||
stride_qh,
|
||||
stride_qd,
|
||||
stride_cosbs,
|
||||
stride_cosd,
|
||||
stride_sinbs,
|
||||
stride_sind,
|
||||
max_total_len,
|
||||
H, # N_CTX
|
||||
BLOCK_HEAD: tl.constexpr,
|
||||
BLOCK_SEQ: tl.constexpr,
|
||||
BLOCK_DMODEL: tl.constexpr,
|
||||
):
|
||||
cur_head_index = tl.program_id(0)
|
||||
cur_seq_index = tl.program_id(1)
|
||||
|
||||
cur_head_range = cur_head_index * BLOCK_HEAD + tl.arange(0, BLOCK_HEAD)
|
||||
cur_seq_range = cur_seq_index * BLOCK_SEQ + tl.arange(0, BLOCK_SEQ)
|
||||
|
||||
dim_range0 = tl.arange(0, BLOCK_DMODEL // 2) * 2
|
||||
dim_range1 = dim_range0 + 1
|
||||
off_q0 = (
|
||||
cur_seq_range[:, None, None] * stride_qbs
|
||||
+ cur_head_range[None, :, None] * stride_qh
|
||||
+ dim_range0[None, None, :] * stride_qd
|
||||
)
|
||||
off_q1 = (
|
||||
cur_seq_range[:, None, None] * stride_qbs
|
||||
+ cur_head_range[None, :, None] * stride_qh
|
||||
+ dim_range1[None, None, :] * stride_qd
|
||||
)
|
||||
|
||||
cos_range = tl.arange(0, BLOCK_DMODEL // 2)
|
||||
off_dimcos_sin = cur_seq_range[:, None, None] * stride_cosbs + cos_range[None, None, :] * stride_cosd
|
||||
|
||||
q0 = tl.load(
|
||||
Q + off_q0,
|
||||
mask=(cur_seq_range[:, None, None] < max_total_len) & (cur_head_range[None, :, None] < H),
|
||||
other=0.0,
|
||||
)
|
||||
q1 = tl.load(
|
||||
Q + off_q1,
|
||||
mask=(cur_seq_range[:, None, None] < max_total_len) & (cur_head_range[None, :, None] < H),
|
||||
other=0.0,
|
||||
)
|
||||
|
||||
cos = tl.load(Cos + off_dimcos_sin, mask=cur_seq_range[:, None, None] < max_total_len, other=0.0)
|
||||
sin = tl.load(Sin + off_dimcos_sin, mask=cur_seq_range[:, None, None] < max_total_len, other=0.0)
|
||||
|
||||
out0 = q0 * cos - q1 * sin
|
||||
out1 = q0 * sin + q1 * cos
|
||||
|
||||
tl.store(
|
||||
Q + off_q0, out0, mask=(cur_seq_range[:, None, None] < max_total_len) & (cur_head_range[None, :, None] < H)
|
||||
)
|
||||
tl.store(
|
||||
Q + off_q1, out1, mask=(cur_seq_range[:, None, None] < max_total_len) & (cur_head_range[None, :, None] < H)
|
||||
)
|
||||
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def rotary_emb_fwd(q, cos, sin):
|
||||
total_len = q.shape[0]
|
||||
head_num = q.shape[1]
|
||||
head_dim = q.shape[2] // 2
|
||||
assert q.shape[0] == cos.shape[0] and q.shape[0] == sin.shape[0], f"q shape {q.shape} cos shape {cos.shape}"
|
||||
BLOCK_HEAD = 4
|
||||
BLOCK_SEQ = 32
|
||||
grid = (triton.cdiv(head_num, BLOCK_HEAD), triton.cdiv(total_len, BLOCK_SEQ))
|
||||
if head_dim >= 128:
|
||||
num_warps = 8
|
||||
else:
|
||||
num_warps = 4
|
||||
|
||||
Llama2Forwards._rotary_kernel[grid](
|
||||
q,
|
||||
cos,
|
||||
sin,
|
||||
q.stride(0),
|
||||
q.stride(1),
|
||||
q.stride(2),
|
||||
cos.stride(0),
|
||||
cos.stride(1),
|
||||
sin.stride(0),
|
||||
sin.stride(1),
|
||||
total_len,
|
||||
head_num,
|
||||
BLOCK_HEAD=BLOCK_HEAD,
|
||||
BLOCK_SEQ=BLOCK_SEQ,
|
||||
BLOCK_DMODEL=head_dim,
|
||||
num_warps=num_warps,
|
||||
num_stages=1,
|
||||
)
|
||||
return
|
@@ -12,6 +12,7 @@ if HAS_TRITON:
|
||||
from .qkv_matmul_kernel import qkv_gemm_4d_kernel
|
||||
from .softmax import softmax_kernel
|
||||
|
||||
# adpeted from https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/ops/transformer/inference/triton/triton_matmul_kernel.py#L312
|
||||
def self_attention_forward_without_fusion(
|
||||
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, input_mask: torch.Tensor, scale: float
|
||||
):
|
||||
@@ -141,6 +142,7 @@ if HAS_TRITON:
|
||||
)
|
||||
return output.view(batches, -1, d_model)
|
||||
|
||||
# modified from https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/ops/transformer/inference/triton/attention.py#L212
|
||||
def self_attention_compute_using_triton(
|
||||
qkv, input_mask, layer_past, alibi, scale, head_size, triangular=False, use_flash=False
|
||||
):
|
||||
|
@@ -12,363 +12,29 @@ except ImportError:
|
||||
HAS_TRITON = False
|
||||
print("please install triton from https://github.com/openai/triton")
|
||||
|
||||
try:
|
||||
from lightllm.models.llama2.triton_kernel.token_attention_nopad_att1 import (
|
||||
token_att_fwd as lightllm_llama2_token_att_fwd,
|
||||
)
|
||||
from lightllm.models.llama2.triton_kernel.token_attention_nopad_reduceV import (
|
||||
token_att_fwd2 as lightllm_llama2_token_att_fwd2,
|
||||
)
|
||||
from lightllm.models.llama2.triton_kernel.token_attention_nopad_softmax import (
|
||||
token_softmax_fwd as lightllm_llama2_token_softmax_fwd,
|
||||
)
|
||||
|
||||
from lightllm.models.llama.triton_kernel.token_attention_nopad_reduceV import token_att_fwd2 as lightllm_llama_token_att_fw2
|
||||
from lightllm.models.llama.triton_kernel.token_attention_nopad_att1 import token_att_fwd as lightllm_llama_token_att_fwd
|
||||
from lightllm.models.llama.triton_kernel.token_attention_nopad_softmax import token_softmax_fwd as lightllm_llama_token_softmax_fwd
|
||||
from lightllm.models.bloom.triton_kernel.token_attention_nopad_att1 import token_att_fwd as lightllm_bloom_token_att_fwd
|
||||
|
||||
HAS_TRITON_TOKEN_ATTENTION = True
|
||||
except ImportError:
|
||||
print("unable to import lightllm kernels")
|
||||
HAS_TRITON_TOKEN_ATTENTION = False
|
||||
|
||||
if HAS_TRITON:
|
||||
|
||||
@triton.jit
|
||||
def _token_attn_1_kernel(
|
||||
Q,
|
||||
K,
|
||||
sm_scale,
|
||||
kv_cache_loc,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seqlen,
|
||||
max_kv_cache_len,
|
||||
attn_out,
|
||||
kv_cache_loc_b_stride,
|
||||
kv_cache_loc_s_stride,
|
||||
q_batch_stride,
|
||||
q_head_stride,
|
||||
q_head_dim_stride,
|
||||
k_batch_stride,
|
||||
k_head_stride,
|
||||
k_head_dim_stride,
|
||||
attn_head_stride,
|
||||
attn_batch_stride,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
):
|
||||
current_batch = tl.program_id(0)
|
||||
current_head = tl.program_id(1)
|
||||
start_n = tl.program_id(2)
|
||||
|
||||
offs_d = tl.arange(0, HEAD_DIM)
|
||||
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
|
||||
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
|
||||
|
||||
current_batch_start_index = max_kv_cache_len - current_batch_seq_len
|
||||
current_batch_end_index = max_kv_cache_len
|
||||
|
||||
off_q = current_batch * q_batch_stride + current_head * q_head_stride + offs_d * q_head_dim_stride
|
||||
|
||||
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
||||
|
||||
block_stard_index = start_n * BLOCK_N
|
||||
block_mask = tl.where(block_stard_index < current_batch_seq_len, 1, 0)
|
||||
|
||||
for start_mark in range(0, block_mask, 1):
|
||||
q = tl.load(Q + off_q + start_mark)
|
||||
offs_n_new = current_batch_start_index + offs_n
|
||||
k_loc = tl.load(
|
||||
kv_cache_loc + kv_cache_loc_b_stride * current_batch + kv_cache_loc_s_stride * offs_n_new,
|
||||
mask=offs_n_new < current_batch_end_index,
|
||||
other=0,
|
||||
)
|
||||
off_k = k_loc[:, None] * k_batch_stride + current_head * k_head_stride + offs_d[None, :] * k_head_dim_stride
|
||||
k = tl.load(K + off_k, mask=offs_n_new[:, None] < current_batch_end_index, other=0.0)
|
||||
att_value = tl.sum(q[None, :] * k, 1)
|
||||
att_value *= sm_scale
|
||||
off_o = current_head * attn_head_stride + (current_batch_in_all_start_index + offs_n) * attn_batch_stride
|
||||
tl.store(attn_out + off_o, att_value, mask=offs_n_new < current_batch_end_index)
|
||||
return
|
||||
|
||||
@triton.jit
|
||||
def _token_attn_1_alibi_kernel(
|
||||
Q,
|
||||
K,
|
||||
sm_scale,
|
||||
alibi,
|
||||
kv_cache_loc,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seqlen,
|
||||
max_kv_cache_len,
|
||||
attn_out,
|
||||
kv_cache_loc_b_stride,
|
||||
kv_cache_loc_s_stride,
|
||||
q_batch_stride,
|
||||
q_head_stride,
|
||||
q_head_dim_stride,
|
||||
k_batch_stride,
|
||||
k_head_stride,
|
||||
k_head_dim_stride,
|
||||
attn_head_stride,
|
||||
attn_batch_stride,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
):
|
||||
current_batch = tl.program_id(0)
|
||||
current_head = tl.program_id(1)
|
||||
start_n = tl.program_id(2)
|
||||
|
||||
offs_d = tl.arange(0, HEAD_DIM)
|
||||
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
|
||||
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
|
||||
|
||||
current_batch_start_index = max_kv_cache_len - current_batch_seq_len
|
||||
current_batch_end_index = max_kv_cache_len
|
||||
|
||||
off_q = current_batch * q_batch_stride + current_head * q_head_stride + offs_d * q_head_dim_stride
|
||||
|
||||
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
||||
|
||||
block_stard_index = start_n * BLOCK_N
|
||||
block_mask = tl.where(block_stard_index < current_batch_seq_len, 1, 0)
|
||||
|
||||
for start_mark in range(0, block_mask, 1):
|
||||
alibi_m = tl.load(alibi + current_head)
|
||||
q = tl.load(Q + off_q + start_mark)
|
||||
offs_n_new = current_batch_start_index + offs_n
|
||||
k_loc = tl.load(
|
||||
kv_cache_loc + kv_cache_loc_b_stride * current_batch + kv_cache_loc_s_stride * offs_n_new,
|
||||
mask=offs_n_new < current_batch_end_index,
|
||||
other=0,
|
||||
)
|
||||
off_k = k_loc[:, None] * k_batch_stride + current_head * k_head_stride + offs_d[None, :] * k_head_dim_stride
|
||||
k = tl.load(K + off_k, mask=offs_n_new[:, None] < current_batch_end_index, other=0.0)
|
||||
att_value = tl.sum(q[None, :] * k, 1)
|
||||
att_value *= sm_scale
|
||||
att_value -= alibi_m * (current_batch_seq_len - 1 - offs_n)
|
||||
off_o = current_head * attn_head_stride + (current_batch_in_all_start_index + offs_n) * attn_batch_stride
|
||||
tl.store(attn_out + off_o, att_value, mask=offs_n_new < current_batch_end_index)
|
||||
return
|
||||
|
||||
@torch.no_grad()
|
||||
def token_attn_fwd_1(
|
||||
q, k, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seqlen, max_kv_cache_len, alibi=None
|
||||
):
|
||||
BLOCK = 32
|
||||
# shape constraints
|
||||
q_head_dim, k_head_dim = q.shape[-1], k.shape[-1]
|
||||
assert q_head_dim == k_head_dim
|
||||
assert k_head_dim in {16, 32, 64, 128}
|
||||
sm_scale = 1.0 / (k_head_dim**0.5)
|
||||
|
||||
batch, head_num = kv_cache_loc.shape[0], q.shape[1]
|
||||
|
||||
grid = (batch, head_num, triton.cdiv(max_kv_cache_len, BLOCK))
|
||||
|
||||
num_warps = 4 if k_head_dim <= 64 else 8
|
||||
num_warps = 2
|
||||
|
||||
if alibi is not None:
|
||||
_token_attn_1_alibi_kernel[grid](
|
||||
q,
|
||||
k,
|
||||
sm_scale,
|
||||
alibi,
|
||||
kv_cache_loc,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seqlen,
|
||||
max_kv_cache_len,
|
||||
attn_out,
|
||||
kv_cache_loc.stride(0),
|
||||
kv_cache_loc.stride(1),
|
||||
q.stride(0),
|
||||
q.stride(1),
|
||||
q.stride(2),
|
||||
k.stride(0),
|
||||
k.stride(1),
|
||||
k.stride(2),
|
||||
attn_out.stride(0),
|
||||
attn_out.stride(1),
|
||||
HEAD_DIM=k_head_dim,
|
||||
BLOCK_N=BLOCK,
|
||||
num_warps=num_warps,
|
||||
num_stages=1,
|
||||
)
|
||||
else:
|
||||
_token_attn_1_kernel[grid](
|
||||
q,
|
||||
k,
|
||||
sm_scale,
|
||||
kv_cache_loc,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seqlen,
|
||||
max_kv_cache_len,
|
||||
attn_out,
|
||||
kv_cache_loc.stride(0),
|
||||
kv_cache_loc.stride(1),
|
||||
q.stride(0),
|
||||
q.stride(1),
|
||||
q.stride(2),
|
||||
k.stride(0),
|
||||
k.stride(1),
|
||||
k.stride(2),
|
||||
attn_out.stride(0),
|
||||
attn_out.stride(1),
|
||||
HEAD_DIM=k_head_dim,
|
||||
BLOCK_N=BLOCK,
|
||||
num_warps=num_warps,
|
||||
num_stages=1,
|
||||
)
|
||||
return
|
||||
|
||||
@triton.jit
|
||||
def _token_attn_softmax_fwd(
|
||||
softmax_logics,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seqlen,
|
||||
softmax_prob_out,
|
||||
logics_head_dim_stride,
|
||||
logics_batch_stride,
|
||||
prob_head_dim_stride,
|
||||
prob_batch_stride,
|
||||
BLOCK_SIZE: tl.constexpr,
|
||||
):
|
||||
current_batch = tl.program_id(0)
|
||||
current_head = tl.program_id(1)
|
||||
|
||||
col_offsets = tl.arange(0, BLOCK_SIZE)
|
||||
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
|
||||
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
|
||||
|
||||
row = tl.load(
|
||||
softmax_logics
|
||||
+ current_head * logics_head_dim_stride
|
||||
+ (current_batch_in_all_start_index + col_offsets) * logics_batch_stride,
|
||||
mask=col_offsets < current_batch_seq_len,
|
||||
other=-float("inf"),
|
||||
).to(tl.float32)
|
||||
|
||||
row_minus_max = row - tl.max(row, axis=0)
|
||||
numerator = tl.exp(row_minus_max)
|
||||
denominator = tl.sum(numerator, axis=0)
|
||||
softmax_output = numerator / denominator
|
||||
|
||||
tl.store(
|
||||
softmax_prob_out
|
||||
+ current_head * prob_head_dim_stride
|
||||
+ (current_batch_in_all_start_index + col_offsets) * prob_batch_stride,
|
||||
softmax_output,
|
||||
mask=col_offsets < current_batch_seq_len,
|
||||
)
|
||||
return
|
||||
|
||||
@torch.no_grad()
|
||||
def token_attn_softmax_fwd(softmax_logics, kv_cache_start_loc, kv_cache_seqlen, softmax_prob_out, max_kv_cache_len):
|
||||
BLOCK_SIZE = triton.next_power_of_2(max_kv_cache_len)
|
||||
batch, head_num = kv_cache_start_loc.shape[0], softmax_logics.shape[0]
|
||||
|
||||
num_warps = 4
|
||||
if BLOCK_SIZE >= 2048:
|
||||
num_warps = 8
|
||||
if BLOCK_SIZE >= 4096:
|
||||
num_warps = 16
|
||||
|
||||
_token_attn_softmax_fwd[(batch, head_num)](
|
||||
softmax_logics,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seqlen,
|
||||
softmax_prob_out,
|
||||
softmax_logics.stride(0),
|
||||
softmax_logics.stride(1),
|
||||
softmax_prob_out.stride(0),
|
||||
softmax_prob_out.stride(1),
|
||||
num_warps=num_warps,
|
||||
BLOCK_SIZE=BLOCK_SIZE,
|
||||
)
|
||||
return
|
||||
|
||||
@triton.jit
|
||||
def _token_attn_2_kernel(
|
||||
Prob,
|
||||
V,
|
||||
attn_out,
|
||||
kv_cache_loc,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seqlen,
|
||||
max_kv_cache_len,
|
||||
kv_cache_loc_b_stride,
|
||||
kv_cache_loc_s_stride,
|
||||
prob_head_dim_stride,
|
||||
prob_batch_stride,
|
||||
v_batch_stride,
|
||||
v_head_stride,
|
||||
v_head_dim_stride,
|
||||
attn_out_batch_stride,
|
||||
attn_out_head_stride,
|
||||
attn_out_head_dim_stride,
|
||||
HEAD_DIM: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
):
|
||||
current_batch = tl.program_id(0)
|
||||
current_head = tl.program_id(1)
|
||||
|
||||
offs_n = tl.arange(0, BLOCK_N)
|
||||
offs_d = tl.arange(0, HEAD_DIM)
|
||||
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
|
||||
current_batch_start_index = max_kv_cache_len - current_batch_seq_len
|
||||
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
|
||||
|
||||
v_loc_off = current_batch * kv_cache_loc_b_stride + (current_batch_start_index + offs_n) * kv_cache_loc_s_stride
|
||||
p_offs = current_head * prob_head_dim_stride + (current_batch_in_all_start_index + offs_n) * prob_batch_stride
|
||||
v_offs = current_head * v_head_stride + offs_d[None, :] * v_head_dim_stride
|
||||
|
||||
acc = tl.zeros([HEAD_DIM], dtype=tl.float32)
|
||||
for start_n in range(0, current_batch_seq_len, BLOCK_N):
|
||||
start_n = tl.multiple_of(start_n, BLOCK_N)
|
||||
p_value = tl.load(
|
||||
Prob + p_offs + start_n * kv_cache_loc_s_stride,
|
||||
mask=(start_n + offs_n) < current_batch_seq_len,
|
||||
other=0.0,
|
||||
)
|
||||
v_loc = tl.load(
|
||||
kv_cache_loc + v_loc_off + start_n * kv_cache_loc_s_stride,
|
||||
mask=(start_n + offs_n) < current_batch_seq_len,
|
||||
other=0.0,
|
||||
)
|
||||
v_value = tl.load(
|
||||
V + v_offs + v_loc[:, None] * v_batch_stride,
|
||||
mask=(start_n + offs_n[:, None]) < current_batch_seq_len,
|
||||
other=0.0,
|
||||
)
|
||||
acc += tl.sum(p_value[:, None] * v_value, 0)
|
||||
|
||||
acc = acc.to(tl.float16)
|
||||
off_o = (
|
||||
current_batch * attn_out_batch_stride
|
||||
+ current_head * attn_out_head_stride
|
||||
+ offs_d * attn_out_head_dim_stride
|
||||
)
|
||||
out_ptrs = attn_out + off_o
|
||||
tl.store(out_ptrs, acc)
|
||||
return
|
||||
|
||||
@torch.no_grad()
|
||||
def token_attn_fwd_2(prob, v, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seqlen, max_kv_cache_len):
|
||||
if triton.__version__ >= "2.1.0":
|
||||
BLOCK = 128
|
||||
else:
|
||||
BLOCK = 64
|
||||
batch, head = kv_cache_loc.shape[0], v.shape[1]
|
||||
grid = (batch, head)
|
||||
num_warps = 4
|
||||
dim = v.shape[-1]
|
||||
|
||||
_token_attn_2_kernel[grid](
|
||||
prob,
|
||||
v,
|
||||
attn_out,
|
||||
kv_cache_loc,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seqlen,
|
||||
max_kv_cache_len,
|
||||
kv_cache_loc.stride(0),
|
||||
kv_cache_loc.stride(1),
|
||||
prob.stride(0),
|
||||
prob.stride(1),
|
||||
v.stride(0),
|
||||
v.stride(1),
|
||||
v.stride(2),
|
||||
attn_out.stride(0),
|
||||
attn_out.stride(1),
|
||||
attn_out.stride(2),
|
||||
HEAD_DIM=dim,
|
||||
BLOCK_N=BLOCK,
|
||||
num_warps=num_warps,
|
||||
num_stages=1,
|
||||
)
|
||||
return
|
||||
|
||||
@torch.no_grad()
|
||||
def token_attention_fwd(
|
||||
q, k, v, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, max_len_in_batch, alibi=None
|
||||
@@ -380,33 +46,44 @@ if HAS_TRITON:
|
||||
|
||||
att_m_tensor = torch.empty((head_num, total_token_num), dtype=q.dtype, device="cuda")
|
||||
|
||||
token_attn_fwd_1(
|
||||
q.view(calcu_shape1),
|
||||
k,
|
||||
att_m_tensor,
|
||||
kv_cache_loc,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seq_len,
|
||||
max_len_in_batch,
|
||||
alibi=alibi,
|
||||
)
|
||||
if alibi is None:
|
||||
lightllm_llama_token_att_fwd(
|
||||
q.view(calcu_shape1),
|
||||
k,
|
||||
att_m_tensor,
|
||||
kv_cache_loc,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seq_len,
|
||||
max_len_in_batch,
|
||||
)
|
||||
else:
|
||||
lightllm_bloom_token_att_fwd(
|
||||
q.view(calcu_shape1),
|
||||
k,
|
||||
att_m_tensor,
|
||||
alibi,
|
||||
kv_cache_loc,
|
||||
kv_cache_start_loc,
|
||||
kv_cache_seq_len,
|
||||
max_len_in_batch,
|
||||
)
|
||||
|
||||
prob = torch.empty_like(att_m_tensor)
|
||||
|
||||
token_attn_softmax_fwd(att_m_tensor, kv_cache_start_loc, kv_cache_seq_len, prob, max_len_in_batch)
|
||||
lightllm_llama_token_softmax_fwd(att_m_tensor, kv_cache_start_loc, kv_cache_seq_len, prob, max_len_in_batch)
|
||||
att_m_tensor = None
|
||||
token_attn_fwd_2(
|
||||
lightllm_llama_token_att_fw2(
|
||||
prob, v, attn_out.view(calcu_shape1), kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, max_len_in_batch
|
||||
)
|
||||
|
||||
prob = None
|
||||
|
||||
return
|
||||
|
||||
|
||||
class Llama2TokenAttentionForwards:
|
||||
@staticmethod
|
||||
@triton.jit
|
||||
|
||||
# this function is adapted from https://github.com/ModelTC/lightllm/blob/5c559dd7981ed67679a08a1e09a88fb4c1550b3a/lightllm/models/llama2/triton_kernel/token_attention_nopad_softmax.py#L8
|
||||
def _fwd_kernel(
|
||||
Logics,
|
||||
V,
|
||||
@@ -478,6 +155,7 @@ class Llama2TokenAttentionForwards:
|
||||
tl.store(out_ptrs, acc)
|
||||
return
|
||||
|
||||
# this function is adapted from https://github.com/ModelTC/lightllm/blob/5c559dd7981ed67679a08a1e09a88fb4c1550b3a/lightllm/models/llama2/triton_kernel/token_attention_nopad_softmax.py#L36
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def token_softmax_reducev_fwd(logics, v, o, b_loc, b_start_loc, b_seq_len, max_input_len, other_kv_index):
|
||||
@@ -514,277 +192,6 @@ class Llama2TokenAttentionForwards:
|
||||
)
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
@triton.jit
|
||||
def _fwd_kernel_token_softmax(
|
||||
Logics,
|
||||
B_Start_Loc,
|
||||
B_Seqlen,
|
||||
Prob_Out,
|
||||
stride_logic_h,
|
||||
stride_logic_bs,
|
||||
stride_prob_h,
|
||||
stride_prob_bs,
|
||||
BLOCK_SIZE: tl.constexpr,
|
||||
):
|
||||
cur_batch = tl.program_id(0)
|
||||
cur_head = tl.program_id(1)
|
||||
|
||||
col_offsets = tl.arange(0, BLOCK_SIZE)
|
||||
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
||||
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
|
||||
|
||||
row = tl.load(
|
||||
Logics + cur_head * stride_logic_h + (cur_batch_in_all_start_index + col_offsets) * stride_logic_bs,
|
||||
mask=col_offsets < cur_batch_seq_len,
|
||||
other=-float("inf"),
|
||||
).to(tl.float32)
|
||||
|
||||
row_minus_max = row - tl.max(row, axis=0)
|
||||
numerator = tl.exp(row_minus_max)
|
||||
denominator = tl.sum(numerator, axis=0)
|
||||
softmax_output = numerator / denominator
|
||||
|
||||
tl.store(
|
||||
Prob_Out + cur_head * stride_prob_h + (cur_batch_in_all_start_index + col_offsets) * stride_prob_bs,
|
||||
softmax_output,
|
||||
mask=col_offsets < cur_batch_seq_len,
|
||||
)
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def token_softmax_fwd(Logics, B_Start_Loc, B_Seqlen, Prob_Out, max_input_len):
|
||||
BLOCK_SIZE = triton.next_power_of_2(max_input_len)
|
||||
batch, head_num = B_Start_Loc.shape[0], Logics.shape[0]
|
||||
|
||||
num_warps = 4
|
||||
if BLOCK_SIZE >= 2048:
|
||||
num_warps = 8
|
||||
if BLOCK_SIZE >= 4096:
|
||||
num_warps = 16
|
||||
|
||||
Llama2TokenAttentionForwards._fwd_kernel_token_softmax[(batch, head_num)](
|
||||
Logics,
|
||||
B_Start_Loc,
|
||||
B_Seqlen,
|
||||
Prob_Out,
|
||||
Logics.stride(0),
|
||||
Logics.stride(1),
|
||||
Prob_Out.stride(0),
|
||||
Prob_Out.stride(1),
|
||||
num_warps=num_warps,
|
||||
BLOCK_SIZE=BLOCK_SIZE,
|
||||
)
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
@triton.jit
|
||||
def _fwd_kernel_token_att1(
|
||||
Q,
|
||||
K,
|
||||
sm_scale,
|
||||
B_Loc,
|
||||
B_Start_Loc,
|
||||
B_Seqlen,
|
||||
max_input_len,
|
||||
Att_Out,
|
||||
stride_b_loc_b,
|
||||
stride_b_loc_s,
|
||||
stride_qbs,
|
||||
stride_qh,
|
||||
stride_qd,
|
||||
stride_kbs,
|
||||
stride_kh,
|
||||
stride_kd,
|
||||
att_stride_h,
|
||||
att_stride_bs,
|
||||
kv_group_num,
|
||||
BLOCK_DMODEL: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
):
|
||||
cur_batch = tl.program_id(0)
|
||||
cur_head = tl.program_id(1)
|
||||
start_n = tl.program_id(2)
|
||||
|
||||
cur_kv_head = cur_head // kv_group_num
|
||||
|
||||
offs_d = tl.arange(0, BLOCK_DMODEL)
|
||||
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
||||
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
|
||||
|
||||
cur_batch_start_index = max_input_len - cur_batch_seq_len
|
||||
cur_batch_end_index = max_input_len
|
||||
|
||||
off_q = cur_batch * stride_qbs + cur_head * stride_qh + offs_d * stride_qd
|
||||
|
||||
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
||||
|
||||
block_stard_index = start_n * BLOCK_N
|
||||
block_mask = tl.where(block_stard_index < cur_batch_seq_len, 1, 0)
|
||||
|
||||
for start_mark in range(0, block_mask, 1):
|
||||
q = tl.load(Q + off_q + start_mark)
|
||||
offs_n_new = cur_batch_start_index + offs_n
|
||||
k_loc = tl.load(
|
||||
B_Loc + stride_b_loc_b * cur_batch + stride_b_loc_s * offs_n_new,
|
||||
mask=offs_n_new < cur_batch_end_index,
|
||||
other=0,
|
||||
)
|
||||
off_k = k_loc[:, None] * stride_kbs + cur_kv_head * stride_kh + offs_d[None, :] * stride_kd
|
||||
k = tl.load(K + off_k, mask=offs_n_new[:, None] < cur_batch_end_index, other=0.0)
|
||||
att_value = tl.sum(q[None, :] * k, 1)
|
||||
att_value *= sm_scale
|
||||
off_o = cur_head * att_stride_h + (cur_batch_in_all_start_index + offs_n) * att_stride_bs
|
||||
tl.store(Att_Out + off_o, att_value, mask=offs_n_new < cur_batch_end_index)
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def token_att_fwd(q, k, att_out, B_Loc, B_Start_Loc, B_Seqlen, max_input_len):
|
||||
BLOCK = 32
|
||||
# shape constraints
|
||||
Lq, Lk = q.shape[-1], k.shape[-1]
|
||||
assert Lq == Lk
|
||||
assert Lk in {16, 32, 64, 128}
|
||||
sm_scale = 1.0 / (Lk**0.5)
|
||||
|
||||
batch, head_num = B_Loc.shape[0], q.shape[1]
|
||||
|
||||
grid = (batch, head_num, triton.cdiv(max_input_len, BLOCK))
|
||||
kv_group_num = q.shape[1] // k.shape[1]
|
||||
|
||||
num_warps = 4 if Lk <= 64 else 8
|
||||
num_warps = 2
|
||||
|
||||
Llama2TokenAttentionForwards._fwd_kernel_token_att1[grid](
|
||||
q,
|
||||
k,
|
||||
sm_scale,
|
||||
B_Loc,
|
||||
B_Start_Loc,
|
||||
B_Seqlen,
|
||||
max_input_len,
|
||||
att_out,
|
||||
B_Loc.stride(0),
|
||||
B_Loc.stride(1),
|
||||
q.stride(0),
|
||||
q.stride(1),
|
||||
q.stride(2),
|
||||
k.stride(0),
|
||||
k.stride(1),
|
||||
k.stride(2),
|
||||
att_out.stride(0),
|
||||
att_out.stride(1),
|
||||
kv_group_num=kv_group_num,
|
||||
BLOCK_DMODEL=Lk,
|
||||
BLOCK_N=BLOCK,
|
||||
num_warps=num_warps,
|
||||
num_stages=1,
|
||||
)
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
@triton.jit
|
||||
def _fwd_kernel_token_att2(
|
||||
Prob,
|
||||
V,
|
||||
Out,
|
||||
B_Loc,
|
||||
B_Start_Loc,
|
||||
B_Seqlen,
|
||||
max_input_len, # B_Start_Loc cumsum of input lens if continuous
|
||||
stride_b_loc_b,
|
||||
stride_b_loc_s,
|
||||
stride_ph,
|
||||
stride_pbs,
|
||||
stride_vbs,
|
||||
stride_vh,
|
||||
stride_vd,
|
||||
stride_obs,
|
||||
stride_oh,
|
||||
stride_od,
|
||||
kv_group_num,
|
||||
BLOCK_DMODEL: tl.constexpr,
|
||||
BLOCK_N: tl.constexpr,
|
||||
):
|
||||
cur_batch = tl.program_id(0)
|
||||
cur_head = tl.program_id(1)
|
||||
|
||||
cur_kv_head = cur_head // kv_group_num
|
||||
|
||||
offs_n = tl.arange(0, BLOCK_N)
|
||||
offs_d = tl.arange(0, BLOCK_DMODEL)
|
||||
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
||||
cur_batch_start_index = max_input_len - cur_batch_seq_len
|
||||
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
|
||||
|
||||
v_loc_off = cur_batch * stride_b_loc_b + (cur_batch_start_index + offs_n) * stride_b_loc_s
|
||||
p_offs = cur_head * stride_ph + (cur_batch_in_all_start_index + offs_n) * stride_pbs
|
||||
v_offs = cur_kv_head * stride_vh + offs_d[None, :] * stride_vd
|
||||
|
||||
acc = tl.zeros([BLOCK_DMODEL], dtype=tl.float32)
|
||||
for start_n in range(0, cur_batch_seq_len, BLOCK_N):
|
||||
start_n = tl.multiple_of(start_n, BLOCK_N)
|
||||
p_value = tl.load(
|
||||
Prob + p_offs + start_n * stride_b_loc_s, mask=(start_n + offs_n) < cur_batch_seq_len, other=0.0
|
||||
)
|
||||
v_loc = tl.load(
|
||||
B_Loc + v_loc_off + start_n * stride_b_loc_s, mask=(start_n + offs_n) < cur_batch_seq_len, other=0.0
|
||||
)
|
||||
v_value = tl.load(
|
||||
V + v_offs + v_loc[:, None] * stride_vbs,
|
||||
mask=(start_n + offs_n[:, None]) < cur_batch_seq_len,
|
||||
other=0.0,
|
||||
)
|
||||
acc += tl.sum(p_value[:, None] * v_value, 0)
|
||||
|
||||
acc = acc.to(tl.float16)
|
||||
off_o = cur_batch * stride_obs + cur_head * stride_oh + offs_d * stride_od
|
||||
out_ptrs = Out + off_o
|
||||
tl.store(out_ptrs, acc)
|
||||
return
|
||||
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
def token_att_fwd2(prob, v, out, B_Loc, B_Start_Loc, B_Seqlen, max_input_len):
|
||||
if triton.__version__ >= "2.1.0":
|
||||
BLOCK = 128
|
||||
else:
|
||||
BLOCK = 64
|
||||
batch, head = B_Loc.shape[0], prob.shape[0]
|
||||
grid = (batch, head)
|
||||
num_warps = 4
|
||||
dim = v.shape[-1]
|
||||
|
||||
kv_group_num = prob.shape[0] // v.shape[1]
|
||||
|
||||
Llama2TokenAttentionForwards._fwd_kernel_token_att2[grid](
|
||||
prob,
|
||||
v,
|
||||
out,
|
||||
B_Loc,
|
||||
B_Start_Loc,
|
||||
B_Seqlen,
|
||||
max_input_len,
|
||||
B_Loc.stride(0),
|
||||
B_Loc.stride(1),
|
||||
prob.stride(0),
|
||||
prob.stride(1),
|
||||
v.stride(0),
|
||||
v.stride(1),
|
||||
v.stride(2),
|
||||
out.stride(0),
|
||||
out.stride(1),
|
||||
out.stride(2),
|
||||
kv_group_num=kv_group_num,
|
||||
BLOCK_DMODEL=dim,
|
||||
BLOCK_N=BLOCK,
|
||||
num_warps=num_warps,
|
||||
num_stages=1,
|
||||
)
|
||||
return
|
||||
|
||||
# this is the interface of llama2 attn forward
|
||||
@staticmethod
|
||||
@torch.no_grad()
|
||||
@@ -796,7 +203,7 @@ class Llama2TokenAttentionForwards:
|
||||
calcu_shape1 = (batch_size, head_num, head_dim)
|
||||
att_m_tensor = torch.empty((head_num, total_token_num), dtype=q.dtype, device="cuda")
|
||||
|
||||
Llama2TokenAttentionForwards.token_att_fwd(
|
||||
lightllm_llama2_token_att_fwd(
|
||||
q,
|
||||
k,
|
||||
att_m_tensor,
|
||||
@@ -808,12 +215,12 @@ class Llama2TokenAttentionForwards:
|
||||
|
||||
if triton.__version__ == "2.0.0":
|
||||
prob = torch.empty_like(att_m_tensor)
|
||||
Llama2TokenAttentionForwards.token_softmax_fwd(
|
||||
lightllm_llama2_token_softmax_fwd(
|
||||
att_m_tensor, kv_cache_start_loc, kv_cache_seq_len, prob, max_len_in_batch
|
||||
)
|
||||
att_m_tensor = None
|
||||
|
||||
Llama2TokenAttentionForwards.token_att_fwd2(
|
||||
lightllm_llama2_token_att_fwd2(
|
||||
prob,
|
||||
v,
|
||||
attn_out.view(calcu_shape1),
|
||||
|
Reference in New Issue
Block a user