mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 03:20:52 +00:00
[autoparallel] added node handler for bmm (#1655)
This commit is contained in:
150
tests/test_auto_parallel/test_node_handler/test_bmm_handler.py
Normal file
150
tests/test_auto_parallel/test_node_handler/test_bmm_handler.py
Normal file
@@ -0,0 +1,150 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from colossalai.fx import ColoTracer, ColoGraphModule
|
||||
from colossalai.auto_parallel.solver.op_handler.dot_handler_v2 import BMMFunctionHandler
|
||||
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
|
||||
class BMMTensorMethodModule(nn.Module):
|
||||
|
||||
def forward(self, x1, x2):
|
||||
return x1.bmm(x2)
|
||||
|
||||
|
||||
class BMMTorchFunctionModule(nn.Module):
|
||||
|
||||
def forward(self, x1, x2):
|
||||
return torch.bmm(x1, x2)
|
||||
|
||||
|
||||
@pytest.mark.parametrize('module', [BMMTensorMethodModule, BMMTorchFunctionModule])
|
||||
def test_2d_device_mesh(module):
|
||||
|
||||
model = module()
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"x1": torch.rand(4, 8, 16).to('meta'),
|
||||
'x2': torch.rand(4, 16, 8).to('meta')
|
||||
})
|
||||
print(graph)
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
linear_mod_node = list(graph.nodes)[2]
|
||||
strategies_vector = StrategiesVector(linear_mod_node)
|
||||
|
||||
# build handler
|
||||
handler = BMMFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "x1"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 8, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 8, 16])
|
||||
|
||||
assert mapping['other'].name == "x2"
|
||||
assert mapping['other'].data.is_meta
|
||||
assert mapping['other'].data.shape == torch.Size([4, 16, 8])
|
||||
assert mapping['other'].type == OperationDataType.ARG
|
||||
assert mapping['other'].logical_shape == torch.Size([4, 16, 8])
|
||||
|
||||
assert mapping['output'].name == "bmm"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([4, 8, 8])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
# one batch dim
|
||||
assert 'Sb0 = Sb0 x Sb0' not in strategy_name_list
|
||||
|
||||
# two batch dim
|
||||
assert 'Sb01 = Sb01 x Sb01' in strategy_name_list
|
||||
|
||||
# SbSi = SbSi x Sb
|
||||
assert 'Sb0Si1 = Sb0Si1 x Sb0' in strategy_name_list
|
||||
assert 'Sb1Si0 = Sb1Si0 x Sb1' in strategy_name_list
|
||||
|
||||
# SbSj = SbR x SbSj
|
||||
assert 'Sb0Sj1 = Sb0R x Sb0Sj1' in strategy_name_list
|
||||
assert 'Sb1Sj0 = Sb1R x Sb1Sj0' in strategy_name_list
|
||||
|
||||
# SbR = SbSk x SbSk
|
||||
assert 'Sb0R = Sb0Sk1 x Sb0Sk1' in strategy_name_list
|
||||
assert 'Sb1R = Sb1Sk0 x Sb1Sk0' in strategy_name_list
|
||||
|
||||
|
||||
@pytest.mark.parametrize('module', [BMMTensorMethodModule, BMMTorchFunctionModule])
|
||||
def test_1d_device_mesh(module):
|
||||
model = module()
|
||||
tracer = ColoTracer()
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"x1": torch.rand(4, 8, 16).to('meta'),
|
||||
'x2': torch.rand(4, 16, 8).to('meta')
|
||||
})
|
||||
print(graph)
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (1, 4)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
linear_mod_node = list(graph.nodes)[2]
|
||||
strategies_vector = StrategiesVector(linear_mod_node)
|
||||
|
||||
# build handler
|
||||
handler = BMMFunctionHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['input'].name == "x1"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([4, 8, 16])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([4, 8, 16])
|
||||
|
||||
assert mapping['other'].name == "x2"
|
||||
assert mapping['other'].data.is_meta
|
||||
assert mapping['other'].data.shape == torch.Size([4, 16, 8])
|
||||
assert mapping['other'].type == OperationDataType.ARG
|
||||
assert mapping['other'].logical_shape == torch.Size([4, 16, 8])
|
||||
|
||||
assert mapping['output'].name == "bmm"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([4, 8, 8])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
strategies_vector = handler.register_strategy()
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
assert len(strategy_name_list) == 1
|
||||
# one batch dim
|
||||
assert 'Sb0 = Sb0 x Sb0' in strategy_name_list
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_1d_device_mesh(BMMTensorMethodModule)
|
||||
test_1d_device_mesh(BMMTorchFunctionModule)
|
||||
test_2d_device_mesh(BMMTensorMethodModule)
|
||||
test_2d_device_mesh(BMMTorchFunctionModule)
|
Reference in New Issue
Block a user