[kernel] cached the op kernel and fixed version check (#2886)

* [kernel] cached the op kernel and fixed version check

* polish code

* polish code
This commit is contained in:
Frank Lee
2023-03-03 21:45:05 +08:00
committed by GitHub
parent 0ff8406b00
commit 3a5d93bc2c
4 changed files with 325 additions and 137 deletions

161
setup.py
View File

@@ -1,115 +1,87 @@
import os
import re
from datetime import datetime
from typing import List
from setuptools import find_packages, setup
from op_builder.utils import get_cuda_bare_metal_version
from op_builder.utils import (
check_cuda_availability,
check_pytorch_version,
check_system_pytorch_cuda_match,
get_cuda_bare_metal_version,
get_pytorch_version,
set_cuda_arch_list,
)
try:
import torch
from torch.utils.cpp_extension import CUDA_HOME, BuildExtension, CUDAExtension
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 10):
raise RuntimeError("Colossal-AI requires Pytorch 1.10 or newer.\n"
"The latest stable release can be obtained from https://pytorch.org/")
from torch.utils.cpp_extension import CUDA_HOME, BuildExtension
TORCH_AVAILABLE = True
except ImportError:
TORCH_AVAILABLE = False
CUDA_HOME = None
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
build_cuda_ext = False
ext_modules = []
is_nightly = int(os.environ.get('NIGHTLY', '0')) == 1
# Some constants for installation checks
MIN_PYTORCH_VERSION_MAJOR = 1
MIN_PYTORCH_VERSION_MINOR = 10
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
BUILD_CUDA_EXT = int(os.environ.get('CUDA_EXT', '0')) == 1
IS_NIGHTLY = int(os.environ.get('NIGHTLY', '0')) == 1
if int(os.environ.get('CUDA_EXT', '0')) == 1:
# a variable to store the op builder
ext_modules = []
# check for CUDA extension dependencies
def environment_check_for_cuda_extension_build():
if not TORCH_AVAILABLE:
raise ModuleNotFoundError(
"PyTorch is not found while CUDA_EXT=1. You need to install PyTorch first in order to build CUDA extensions"
"[extension] PyTorch is not found while CUDA_EXT=1. You need to install PyTorch first in order to build CUDA extensions"
)
if not CUDA_HOME:
raise RuntimeError(
"CUDA_HOME is not found while CUDA_EXT=1. You need to export CUDA_HOME environment vairable or install CUDA Toolkit first in order to build CUDA extensions"
"[extension] CUDA_HOME is not found while CUDA_EXT=1. You need to export CUDA_HOME environment vairable or install CUDA Toolkit first in order to build CUDA extensions"
)
build_cuda_ext = True
check_system_pytorch_cuda_match(CUDA_HOME)
check_pytorch_version(MIN_PYTORCH_VERSION_MAJOR, MIN_PYTORCH_VERSION_MINOR)
check_cuda_availability()
def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
torch_binary_major = torch.version.cuda.split(".")[0]
torch_binary_minor = torch.version.cuda.split(".")[1]
def fetch_requirements(path) -> List[str]:
"""
This function reads the requirements file.
print("\nCompiling cuda extensions with")
print(raw_output + "from " + cuda_dir + "/bin\n")
Args:
path (str): the path to the requirements file.
if bare_metal_major != torch_binary_major:
print(f'The detected CUDA version ({raw_output}) mismatches the version that was used to compile PyTorch '
f'({torch.version.cuda}). CUDA extension will not be installed.')
return False
if bare_metal_minor != torch_binary_minor:
print("\nWarning: Cuda extensions are being compiled with a version of Cuda that does "
"not match the version used to compile Pytorch binaries. "
f"Pytorch binaries were compiled with Cuda {torch.version.cuda}.\n"
"In some cases, a minor-version mismatch will not cause later errors: "
"https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. ")
return True
def check_cuda_availability(cuda_dir):
if not torch.cuda.is_available():
# https://github.com/NVIDIA/apex/issues/486
# Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query
# torch.cuda.get_device_capability(), which will fail if you are compiling in an environment
# without visible GPUs (e.g. during an nvidia-docker build command).
print(
'\nWarning: Torch did not find available GPUs on this system.\n',
'If your intention is to cross-compile, this is not an error.\n'
'By default, Colossal-AI will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n'
'Volta (compute capability 7.0), Turing (compute capability 7.5),\n'
'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n'
'If you wish to cross-compile for a single specific architecture,\n'
'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n')
if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
_, bare_metal_major, _ = get_cuda_bare_metal_version(cuda_dir)
if int(bare_metal_major) == 11:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
else:
os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
return False
if cuda_dir is None:
print("nvcc was not found. CUDA extension will not be installed. If you're installing within a container from "
"https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
return False
return True
def append_nvcc_threads(nvcc_extra_args):
_, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2:
return nvcc_extra_args + ["--threads", "4"]
return nvcc_extra_args
def fetch_requirements(path):
Returns:
The lines in the requirements file.
"""
with open(path, 'r') as fd:
return [r.strip() for r in fd.readlines()]
def fetch_readme():
def fetch_readme() -> str:
"""
This function reads the README.md file in the current directory.
Returns:
The lines in the README file.
"""
with open('README.md', encoding='utf-8') as f:
return f.read()
def get_version():
def get_version() -> str:
"""
This function reads the version.txt and generates the colossalai/version.py file.
Returns:
The library version stored in version.txt.
"""
setup_file_path = os.path.abspath(__file__)
project_path = os.path.dirname(setup_file_path)
version_txt_path = os.path.join(project_path, 'version.txt')
@@ -121,13 +93,17 @@ def get_version():
# write version into version.py
with open(version_py_path, 'w') as f:
f.write(f"__version__ = '{version}'\n")
if build_cuda_ext:
torch_version = '.'.join(torch.__version__.split('.')[:2])
cuda_version = '.'.join(get_cuda_bare_metal_version(CUDA_HOME)[1:])
# look for pytorch and cuda version
if BUILD_CUDA_EXT:
torch_major, torch_minor, _ = get_pytorch_version()
torch_version = f'{torch_major}.{torch_minor}'
cuda_version = '.'.join(get_cuda_bare_metal_version(CUDA_HOME))
else:
torch_version = None
cuda_version = None
# write the version into the python file
if torch_version:
f.write(f'torch = "{torch_version}"\n')
else:
@@ -141,25 +117,26 @@ def get_version():
return version
if build_cuda_ext:
build_cuda_ext = check_cuda_availability(CUDA_HOME) and check_cuda_torch_binary_vs_bare_metal(CUDA_HOME)
if build_cuda_ext:
# Set up macros for forward/backward compatibility hack around
# https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e
# and
# https://github.com/NVIDIA/apex/issues/456
# https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac
if BUILD_CUDA_EXT:
environment_check_for_cuda_extension_build()
set_cuda_arch_list(CUDA_HOME)
from op_builder import ALL_OPS
op_names = []
# load all builders
for name, builder_cls in ALL_OPS.items():
print(f'===== Building Extension {name} =====')
op_names.append(name)
ext_modules.append(builder_cls().builder())
# show log
op_name_list = ', '.join(op_names)
print(f"[extension] loaded builders for {op_name_list}")
# always put not nightly branch as the if branch
# otherwise github will treat colossalai-nightly as the project name
# and it will mess up with the dependency graph insights
if not is_nightly:
if not IS_NIGHTLY:
version = get_version()
package_name = 'colossalai'
else: