mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 20:10:17 +00:00
[plugin] a workaround for zero plugins' optimizer checkpoint (#3780)
* [test] refactor torch ddp checkpoint test * [plugin] update low level zero optim checkpoint * [plugin] update gemini optim checkpoint
This commit is contained in:
@@ -1,87 +1,95 @@
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from utils import shared_tempdir
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import GeminiPlugin
|
||||
from colossalai.booster.plugin.gemini_plugin import GeminiCheckpointIO
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.testing import check_state_dict_equal, parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.utils.cuda import get_current_device
|
||||
from colossalai.zero import ColoInitContext, ZeroDDP
|
||||
from colossalai.zero import ZeroDDP
|
||||
from colossalai.zero.gemini.chunk import ChunkManager, search_chunk_configuration
|
||||
from colossalai.zero.gemini.gemini_mgr import GeminiManager
|
||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
|
||||
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
@parameterize('model_name', ['bert'])
|
||||
@parameterize('use_safetensors', [True, False])
|
||||
@parameterize('model_name', ['transformers_bert_for_sequence_classification'])
|
||||
@parameterize('use_safetensors', [False, True])
|
||||
def exam_state_dict_with_origin(placement_policy, model_name, use_safetensors: bool):
|
||||
from transformers import BertForSequenceClassification
|
||||
(model_fn, data_gen_fn, output_transform_fn, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
||||
bert_model = model_fn()
|
||||
|
||||
model_ckpt_dir = tempfile.TemporaryDirectory()
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, *_ = get_components_func()
|
||||
with ColoInitContext(device=(get_current_device())):
|
||||
bert_model = model_builder()
|
||||
bert_model.config.save_pretrained(save_directory=(model_ckpt_dir.name))
|
||||
with shared_tempdir() as tempdir:
|
||||
pretrained_path = os.path.join(tempdir, 'pretrained')
|
||||
bert_model.config.save_pretrained(save_directory=pretrained_path)
|
||||
|
||||
config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100)
|
||||
chunk_manager = ChunkManager(config_dict)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
bert_model = ZeroDDP(bert_model, gemini_manager)
|
||||
bert_model.train()
|
||||
# TODO(ver217): use boost api
|
||||
config_dict, *_ = search_chunk_configuration(bert_model, search_range_mb=1, search_interval_byte=100)
|
||||
chunk_manager = ChunkManager(config_dict)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
bert_model = ZeroDDP(bert_model, gemini_manager)
|
||||
bert_model.train()
|
||||
|
||||
ckpt_io = GeminiCheckpointIO()
|
||||
if ckpt_io.coordinator.is_master():
|
||||
ckpt_io = GeminiCheckpointIO()
|
||||
model_size = sum(p.numel() * p.element_size() for p in bert_model.parameters()) / 1024**2
|
||||
ckpt_io.save_model(bert_model, (model_ckpt_dir.name),
|
||||
ckpt_io.save_model(bert_model, (pretrained_path),
|
||||
True,
|
||||
True,
|
||||
'', (model_size / 3),
|
||||
use_safetensors=use_safetensors)
|
||||
new_bert_model = BertForSequenceClassification.from_pretrained(model_ckpt_dir.name)
|
||||
check_state_dict_equal(bert_model.state_dict(only_rank_0=True, dtype=(torch.float32)),
|
||||
dist.barrier()
|
||||
new_bert_model = BertForSequenceClassification.from_pretrained(pretrained_path)
|
||||
check_state_dict_equal(bert_model.state_dict(only_rank_0=False, dtype=torch.float32),
|
||||
new_bert_model.state_dict(), False)
|
||||
model_ckpt_dir.cleanup()
|
||||
|
||||
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
@parameterize('model_name', ['gpt2', 'bert'])
|
||||
@parameterize('use_safetensors', [True, False])
|
||||
def exam_state_dict(placement_policy, model_name: str, use_safetensors: bool):
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, *_ = get_components_func()
|
||||
with ColoInitContext(device=(get_current_device())):
|
||||
model = model_builder()
|
||||
new_model = model_builder()
|
||||
config_dict, *_ = search_chunk_configuration(model, search_range_mb=1, search_interval_byte=100)
|
||||
chunk_manager = ChunkManager(config_dict)
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ZeroDDP(model, gemini_manager)
|
||||
@parameterize('shard', [True, False])
|
||||
@parameterize('model_name', ['transformers_gpt'])
|
||||
def exam_state_dict(placement_policy, shard: bool, model_name: str):
|
||||
(model_fn, data_gen_fn, output_transform_fn, _) = next(iter(model_zoo.get_sub_registry(model_name).values()))
|
||||
criterion = lambda x: x.mean()
|
||||
plugin = GeminiPlugin(placement_policy=placement_policy)
|
||||
booster = Booster(plugin=plugin)
|
||||
|
||||
model.train()
|
||||
#new model
|
||||
new_config_dict, *_ = search_chunk_configuration(new_model, search_range_mb=1, search_interval_byte=100)
|
||||
new_chunk_manager = ChunkManager(new_config_dict)
|
||||
new_gemini_manager = GeminiManager(placement_policy, new_chunk_manager)
|
||||
new_model = ZeroDDP(new_model, new_gemini_manager)
|
||||
model = model_fn()
|
||||
new_model = model_fn()
|
||||
optimizer = HybridAdam(model.parameters(), lr=0.001)
|
||||
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
||||
new_optimizer = HybridAdam(new_model.parameters(), lr=0.001)
|
||||
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
|
||||
|
||||
model_ckpt_dir = tempfile.TemporaryDirectory()
|
||||
ckpt_io = GeminiCheckpointIO()
|
||||
model_size = sum(p.numel() * p.element_size() for p in model.parameters()) / 1024**2
|
||||
ckpt_io.save_model(model, (model_ckpt_dir.name),
|
||||
True,
|
||||
True,
|
||||
'epoch', (model_size / 3),
|
||||
use_safetensors=use_safetensors)
|
||||
data = data_gen_fn()
|
||||
data = {k: v.to('cuda') if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v for k, v in data.items()}
|
||||
output = model(**data)
|
||||
output = output_transform_fn(output)
|
||||
output_key = list(output.keys())[0]
|
||||
loss = criterion(output[output_key])
|
||||
|
||||
if ckpt_io.coordinator.is_master():
|
||||
ckpt_io.load_model(new_model, (model_ckpt_dir.name), strict=True)
|
||||
model_dict = model.state_dict(only_rank_0=True)
|
||||
new_model_dict = new_model.state_dict(only_rank_0=True)
|
||||
check_state_dict_equal(model_dict, new_model_dict, False)
|
||||
model_ckpt_dir.cleanup()
|
||||
booster.backward(loss, optimizer)
|
||||
optimizer.step()
|
||||
|
||||
with shared_tempdir() as tempdir:
|
||||
model_ckpt_path = f"{tempdir}/model"
|
||||
optimizer_ckpt_path = f"{tempdir}/optimizer"
|
||||
booster.save_model(model, model_ckpt_path)
|
||||
if not shard:
|
||||
# TODO(ver217): optimizer checkpointing is not supported for sharded checkpoint
|
||||
booster.save_optimizer(optimizer, optimizer_ckpt_path)
|
||||
dist.barrier()
|
||||
|
||||
booster.load_model(new_model, model_ckpt_path)
|
||||
check_state_dict_equal(model.unwrap().state_dict(only_rank_0=False),
|
||||
new_model.unwrap().state_dict(only_rank_0=False), False)
|
||||
if not shard:
|
||||
booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
|
||||
check_state_dict_equal(optimizer.state_dict(), new_optimizer.state_dict(), False)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
@@ -92,7 +100,7 @@ def run_dist(rank, world_size, port):
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize('world_size', [4, 4])
|
||||
@pytest.mark.parametrize('world_size', [2])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gemini_ckpIO(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
Reference in New Issue
Block a user