update documentation

This commit is contained in:
ver217 2021-10-29 09:29:20 +08:00
parent 3245a69fc2
commit 3c7604ba30
11 changed files with 16 additions and 32 deletions

View File

@ -1,6 +1,8 @@
# ColossalAI
An integrated large-scale model training system with efficient parallelization techniques
An integrated large-scale model training system with efficient parallelization techniques.
arXiv: [Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training](https://arxiv.org/abs/2110.14883)
## Installation

View File

@ -12,6 +12,7 @@ from colossalai.registry import OPTIMIZERS
class Lamb(Optimizer):
r"""Implements Lamb algorithm.
It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
@ -23,7 +24,8 @@ class Lamb(Optimizer):
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
adam (bool, optional): always use trust ratio = 1, which turns this into
Adam. Useful for comparison purposes.
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
.. _Large Batch Optimization for Deep Learning\: Training BERT in 76 minutes:
https://arxiv.org/abs/1904.00962
"""

View File

@ -12,6 +12,7 @@ from colossalai.registry import OPTIMIZERS
class Lars(Optimizer):
r"""Implements the LARS optimizer from `"Large batch training of convolutional networks"
<https://arxiv.org/pdf/1708.03888.pdf>`_.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
@ -35,7 +36,8 @@ class Lars(Optimizer):
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
raise ValueError(
"Invalid weight_decay value: {}".format(weight_decay))
if eeta <= 0 or eeta > 1:
raise ValueError("Invalid eeta value: {}".format(eeta))
if epsilon < 0:
@ -48,6 +50,7 @@ class Lars(Optimizer):
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.

View File

@ -1,5 +0,0 @@
colossalai.nn.data.prefetcher
=============================
.. automodule:: colossalai.nn.data.prefetcher
:members:

View File

@ -16,5 +16,3 @@ colossalai.nn.data
colossalai.nn.data.base_dataset
colossalai.nn.data.caltech101_dataset
colossalai.nn.data.cifar10_dataset
colossalai.nn.data.prefetcher
colossalai.nn.data.wiki_dataset

View File

@ -1,5 +0,0 @@
colossalai.nn.data.wiki\_dataset
================================
.. automodule:: colossalai.nn.data.wiki_dataset
:members:

View File

@ -1,5 +0,0 @@
colossalai.nn.model.bert.bert
=============================
.. automodule:: colossalai.nn.model.bert.bert
:members:

View File

@ -1,11 +0,0 @@
colossalai.nn.model.bert
========================
.. automodule:: colossalai.nn.model.bert
:members:
.. toctree::
:maxdepth: 2
colossalai.nn.model.bert.bert

View File

@ -7,7 +7,6 @@ colossalai.nn.model
.. toctree::
:maxdepth: 2
colossalai.nn.model.bert
colossalai.nn.model.vanilla_resnet
colossalai.nn.model.vision_transformer

View File

@ -0,0 +1,5 @@
colossalai.nn.optimizer.lars
============================
.. automodule:: colossalai.nn.optimizer.lars
:members:

View File

@ -13,6 +13,7 @@ colossalai.nn.optimizer
colossalai.nn.optimizer.fused_lamb
colossalai.nn.optimizer.fused_sgd
colossalai.nn.optimizer.lamb
colossalai.nn.optimizer.lars
colossalai.nn.optimizer.loss_scaler
colossalai.nn.optimizer.zero_redundancy_optimizer_level_1
colossalai.nn.optimizer.zero_redundancy_optimizer_level_2