mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 01:55:12 +00:00
Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b7699
.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
This commit is contained in:
@@ -55,7 +55,7 @@ class DelayerScheduler(_LRScheduler):
|
||||
|
||||
|
||||
class WarmupScheduler(_LRScheduler):
|
||||
""" Starts with a linear warmup lr schedule until it reaches N epochs the applies a scheduler
|
||||
""" Starts with a linear warmup lr schedule until it reaches N epochs the applies a scheduler
|
||||
|
||||
:param optimizer: Wrapped optimizer.
|
||||
:type optimizer: torch.optim.Optimizer
|
||||
@@ -66,11 +66,8 @@ class WarmupScheduler(_LRScheduler):
|
||||
:param last_epoch: The index of last epoch, defaults to -1
|
||||
:type last_epoch: int, optional
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1):
|
||||
if warmup_epochs < 0:
|
||||
raise ValueError(f'warmup_epochs must >= 0, got {warmup_epochs}')
|
||||
self.warmup_epochs = warmup_epochs
|
||||
self.warmup_epochs = int(warmup_epochs)
|
||||
self.after_scheduler = after_scheduler
|
||||
self.finished = False
|
||||
super().__init__(optimizer, last_epoch)
|
||||
@@ -79,14 +76,10 @@ class WarmupScheduler(_LRScheduler):
|
||||
if self.last_epoch >= self.warmup_epochs:
|
||||
if not self.finished:
|
||||
self.after_scheduler.base_lrs = self.base_lrs
|
||||
# reset lr to base_lr
|
||||
for group, base_lr in zip(self.optimizer.param_groups, self.base_lrs):
|
||||
group['lr'] = base_lr
|
||||
self.finished = True
|
||||
with _enable_get_lr_call(self.after_scheduler):
|
||||
return self.after_scheduler.get_lr()
|
||||
return self.after_scheduler.get_lr()
|
||||
|
||||
return [(self.last_epoch + 1) / (self.warmup_epochs + 1) * lr for lr in self.base_lrs]
|
||||
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
|
||||
|
||||
def step(self, epoch=None):
|
||||
if self.finished:
|
||||
|
Reference in New Issue
Block a user