Support TP-compatible Torch AMP and Update trainer API (#27)

* Add gradient accumulation, fix lr scheduler

* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)

* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes

* fixed trainer

* Revert "fixed trainer"

This reverts commit 2e0b0b7699.

* improved consistency between trainer, engine and schedule (#23)

Co-authored-by: 1SAA <c2h214748@gmail.com>

Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
This commit is contained in:
Frank Lee
2021-11-18 19:45:06 +08:00
committed by GitHub
parent 2b05de4c64
commit 3defa32aee
80 changed files with 2194 additions and 1584 deletions

View File

@@ -55,7 +55,7 @@ class DelayerScheduler(_LRScheduler):
class WarmupScheduler(_LRScheduler):
""" Starts with a linear warmup lr schedule until it reaches N epochs the applies a scheduler
""" Starts with a linear warmup lr schedule until it reaches N epochs the applies a scheduler
:param optimizer: Wrapped optimizer.
:type optimizer: torch.optim.Optimizer
@@ -66,11 +66,8 @@ class WarmupScheduler(_LRScheduler):
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1):
if warmup_epochs < 0:
raise ValueError(f'warmup_epochs must >= 0, got {warmup_epochs}')
self.warmup_epochs = warmup_epochs
self.warmup_epochs = int(warmup_epochs)
self.after_scheduler = after_scheduler
self.finished = False
super().__init__(optimizer, last_epoch)
@@ -79,14 +76,10 @@ class WarmupScheduler(_LRScheduler):
if self.last_epoch >= self.warmup_epochs:
if not self.finished:
self.after_scheduler.base_lrs = self.base_lrs
# reset lr to base_lr
for group, base_lr in zip(self.optimizer.param_groups, self.base_lrs):
group['lr'] = base_lr
self.finished = True
with _enable_get_lr_call(self.after_scheduler):
return self.after_scheduler.get_lr()
return self.after_scheduler.get_lr()
return [(self.last_epoch + 1) / (self.warmup_epochs + 1) * lr for lr in self.base_lrs]
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
def step(self, epoch=None):
if self.finished: