[moe] clean legacy code

This commit is contained in:
hxwang
2024-07-16 09:08:31 +00:00
committed by Hongxin Liu
parent 74eccac0db
commit 3e2b6132b7
39 changed files with 163 additions and 173 deletions

View File

@@ -0,0 +1,126 @@
from time import time
from typing import Optional
import torch
import torch.distributed as dist
import torch.nn as nn
from torch import Tensor
from colossalai.logging import DistributedLogger
def print_model_numel(logger: DistributedLogger, model: nn.Module) -> None:
B = 1024**3
M = 1024**2
K = 1024
outputs = "Model param count: "
model_param = sum(p.numel() for p in model.parameters() if p.requires_grad)
if model_param >= B:
outputs += f"{model_param / B:.2f} B\n"
elif model_param >= M:
outputs += f"{model_param / M:.2f} M\n"
elif model_param >= K:
outputs += f"{model_param / K:.2f} K\n"
else:
outputs += f"{model_param}\n"
logger.info(outputs, ranks=[0])
def get_model_numel(model: nn.Module) -> None:
model_param = sum(p.numel() for p in model.parameters() if p.requires_grad)
return model_param
def divide(x: float, y: float) -> float:
if y == 0:
return float("inf")
elif y == float("inf"):
return float("nan")
return x / y
@torch.no_grad()
def all_reduce_mean(x: float, world_size: int) -> float:
if world_size == 1:
return x
tensor = torch.tensor([x], device=torch.cuda.current_device())
dist.all_reduce(tensor)
tensor = tensor / world_size
return tensor.item()
class Timer:
def __init__(self) -> None:
self.start_time: Optional[float] = None
self.duration: float = 0.0
def start(self) -> None:
self.start_time = time()
def end(self) -> None:
assert self.start_time is not None
self.duration += time() - self.start_time
self.start_time = None
def reset(self) -> None:
self.duration = 0.0
class PerformanceEvaluator:
"""
Callback for valuate the performance of the model.
Args:
actor_num_params: The number of parameters of the actor model.
critic_num_params: The number of parameters of the critic model.
initial_model_num_params: The number of parameters of the initial model.
reward_model_num_params: The number of parameters of the reward model.
enable_grad_checkpoint: Whether to enable gradient checkpointing.
ignore_episodes: The number of episodes to ignore when calculating the performance.
"""
def __init__(
self,
model_numel: int,
enable_grad_checkpoint: bool = False,
ignore_steps: int = 0,
dp_world_size: Optional[int] = None,
) -> None:
self.model_numel = model_numel
self.enable_grad_checkpoint = enable_grad_checkpoint
self.ignore_steps = ignore_steps
self.dp_world_size = dp_world_size
self.world_size = dist.get_world_size()
self.disable: bool = False
self.timer = Timer()
self.num_samples: int = 0
self.flop: int = 0
def on_step_start(self, step: int) -> None:
self.disable = self.ignore_steps > 0 and step < self.ignore_steps
if self.disable:
return
torch.cuda.synchronize()
self.timer.start()
def on_step_end(self, input_ids: Tensor, **kwargs) -> None:
if self.disable:
return
torch.cuda.synchronize()
self.timer.end()
batch_size, seq_len = input_ids.shape
self.num_samples += batch_size
self.flop += batch_size * seq_len * self.model_numel * 2 * (3 + int(self.enable_grad_checkpoint))
def on_fit_end(self) -> None:
avg_duration = all_reduce_mean(self.timer.duration, self.world_size)
avg_throughput = self.num_samples * self.dp_world_size / (avg_duration + 1e-12)
mp_world_size = self.world_size // self.dp_world_size
avg_tflops_per_gpu = self.flop / 1e12 / (avg_duration + 1e-12) / mp_world_size
if dist.get_rank() == 0:
print(
f"num_samples: {self.num_samples}, dp_world_size: {self.dp_world_size}, flop: {self.flop}, avg_duration: {avg_duration}, "
f"avg_throughput: {avg_throughput}"
)
print(f"Throughput: {avg_throughput:.2f} samples/sec, TFLOPS per GPU: {avg_tflops_per_gpu:.2f}")