mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-15 14:12:02 +00:00
[moe] clean legacy code
This commit is contained in:
81
tests/test_legacy/test_moe/test_grad_handler.py
Normal file
81
tests/test_legacy/test_moe/test_grad_handler.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
|
||||
import colossalai
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.legacy.moe.manager import MOE_MANAGER
|
||||
|
||||
# from colossalai.shardformer.layer.moe.layers import SparseMLP
|
||||
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use, spawn
|
||||
from tests.test_moe.moe_utils import MoeGradientHandler
|
||||
|
||||
BATCH_SIZE = 4
|
||||
DIM = 16
|
||||
|
||||
|
||||
def run_test(rank, world_size, port):
|
||||
colossalai.launch(
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
host="localhost",
|
||||
port=port,
|
||||
backend="nccl",
|
||||
)
|
||||
|
||||
MOE_MANAGER.setup(parallel="EP") # MOE initialization
|
||||
num_experts_list = [1, 2, 4]
|
||||
layer_list = []
|
||||
for num_experts in num_experts_list:
|
||||
moe_layer = SparseMLP(
|
||||
hidden_size=DIM,
|
||||
intermediate_size=DIM * 4,
|
||||
num_experts=num_experts,
|
||||
router_top_k=1,
|
||||
router_noisy_policy="Jitter",
|
||||
)
|
||||
layer_list.append(moe_layer)
|
||||
|
||||
model = nn.ModuleList(layer_list)
|
||||
model = model.to(get_accelerator().get_current_device())
|
||||
dist_dict = MOE_MANAGER.parallel_info_dict
|
||||
assert_equal_in_group(layer_list[0].experts.wi.data, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[0].experts.wo.data, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.wi.data, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.wo.data, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[2].experts.wi.data, dist_dict[4].dp_group)
|
||||
assert_equal_in_group(layer_list[2].experts.wo.data, dist_dict[4].dp_group)
|
||||
# MoE model synchronization passed
|
||||
|
||||
grad_handler = MoeGradientHandler(model, 0)
|
||||
|
||||
rank = dist.get_rank()
|
||||
torch.cuda.manual_seed(78 + rank)
|
||||
data = torch.randn(BATCH_SIZE, DIM, device=get_accelerator().get_current_device())
|
||||
grad = torch.randn_like(data)
|
||||
|
||||
MOE_MANAGER.reset_loss()
|
||||
for layer in layer_list:
|
||||
data = layer(data)
|
||||
data.backward(grad)
|
||||
grad_handler.handle_gradient()
|
||||
|
||||
assert_equal_in_group(layer_list[0].experts.wi.grad, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[0].experts.wo.grad, dist_dict[1].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.wi.grad, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[1].experts.wo.grad, dist_dict[2].dp_group)
|
||||
assert_equal_in_group(layer_list[2].experts.wi.grad, dist_dict[4].dp_group)
|
||||
assert_equal_in_group(layer_list[2].experts.wo.grad, dist_dict[4].dp_group)
|
||||
# MoE grad handler test passed
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="moe need to be refactored")
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_grad_handler():
|
||||
spawn(run_test, 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_grad_handler()
|
Reference in New Issue
Block a user