[shardformer] add gpt2 test and layer class refactor (#4041)

* add gpt2 test and layer class refactor

* add dropout in gpt2 policy
This commit is contained in:
FoolPlayer
2023-06-20 11:45:16 +08:00
committed by Frank Lee
parent d857f3dbba
commit 4021b9a8a2
14 changed files with 1400 additions and 840 deletions

View File

@@ -1,126 +1,101 @@
from typing import Any, Callable, Dict, List, Tuple, Type
from typing import Type, Union
import torch.nn as nn
from transformers.models.gpt2.modeling_gpt2 import GPT2Block, GPT2Model
import colossalai.shardformer.layer.layers as col_nn
import colossalai.shardformer.layer as col_nn
from colossalai.shardformer.layer.dropout import Dropout1D
from .basepolicy import Argument, Col_Layer, Layer, Policy, Row_Layer
from ..utils import getattr_, setattr_
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
class GPT2Policy(Policy):
@staticmethod
def argument_policy(config, world_size):
def preprocess(self):
# reshape the embedding layer
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self):
return {
GPT2Model:
Argument(attr_dict={}, param_funcs=[
GPT2Policy.embedding,
]),
ModulePolicyDescription(attribute_replacement={},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="wte",
target_module=col_nn.VocabParallelEmbedding1D,
),
]),
GPT2Block:
Argument(
attr_dict={
# 1. reduce hidden size
"attn.embed_dim": config.hidden_size // world_size,
"attn.split_size": config.hidden_size // world_size,
"crossattention.embed_dim": config.hidden_size // world_size,
"crossattention.split_size": config.hidden_size // world_size,
# 2. reduce number of heads
"attn.num_heads": config.num_attention_heads // world_size,
"crossattention.num_heads": config.num_attention_heads // world_size,
},
param_funcs=[
GPT2Policy.attn_in,
GPT2Policy.attn_out,
GPT2Policy.mlp_in,
GPT2Policy.mlp_out,
]),
ModulePolicyDescription(attribute_replacement={
"attn.embed_dim": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"attn.split_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
},
param_replacement=[],
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="attn.c_attn",
target_module=col_nn.LinearConv1D_Col,
kwargs={
"n_cast": 3,
},
),
SubModuleReplacementDescription(
suffix="attn.c_proj",
target_module=col_nn.LinearConv1D_Row,
kwargs={
"n_cast": 1,
},
),
SubModuleReplacementDescription(
suffix="mlp.c_fc",
target_module=col_nn.LinearConv1D_Col,
kwargs={
"n_cast": 1,
},
),
SubModuleReplacementDescription(
suffix="mlp.c_proj",
target_module=col_nn.LinearConv1D_Row,
kwargs={
"n_cast": 1,
},
),
SubModuleReplacementDescription(
suffix="attn.attn_dropout",
target_module=col_nn.Dropout1D,
),
SubModuleReplacementDescription(
suffix="attn.resid_dropout",
target_module=col_nn.Dropout1D,
),
SubModuleReplacementDescription(
suffix="mlp.dropout",
target_module=col_nn.Dropout1D,
),
])
}
@staticmethod
def attn_in() -> List:
return [
Col_Layer(suffix="attn.c_attn",
weight="weight",
bias="bias",
n_cast=3,
reversed=True,
replace_layer=col_nn.Linear1D_Col),
Col_Layer(suffix="crossattention.c_attn",
weight="weight",
bias="bias",
n_cast=2,
reversed=True,
ignore=True,
replace_layer=col_nn.Linear1D_Col),
Col_Layer(suffix="crossattention.q_attn",
weight="weight",
bias="bias",
reversed=True,
ignore=True,
replace_layer=col_nn.Linear1D_Col)
]
def new_model_class(self):
@staticmethod
def attn_out() -> List:
return [
Row_Layer(suffix="attn.c_proj",
weight="weight",
bias="bias",
reversed=True,
replace_layer=col_nn.Linear1D_Row),
Row_Layer(suffix="crossattention.c_proj",
weight="weight",
bias="bias",
reversed=True,
ignore=True,
replace_layer=col_nn.Linear1D_Row)
]
return self.model
@staticmethod
def mlp_in() -> List:
return [
Col_Layer(suffix="mlp.c_fc", weight="weight", bias="bias", reversed=True,
replace_layer=col_nn.Linear1D_Col),
]
@staticmethod
def mlp_out() -> List:
return [
Row_Layer(suffix="mlp.c_proj",
weight="weight",
bias="bias",
reversed=True,
replace_layer=col_nn.Linear1D_Row)
]
@staticmethod
def embedding() -> List:
return [Col_Layer(suffix="wte", weight="weight", replace_layer=col_nn.VocabParallelEmbedding1D)]
def postprocess(self):
return self.model
from transformers import GPT2LMHeadModel
# GPT2Model
class GPT2ModelPolicy(GPT2Policy):
class GPT2LMHeadModelPolicy(GPT2Policy):
@staticmethod
def argument_policy(config, world_size):
base_argument = GPT2Policy.argument_policy(config, world_size)
argument = {
GPT2LMHeadModel: Argument(attr_dict={}, param_funcs=[
GPT2LMHeadModelPolicy.unembedding,
]),
}
argument.update(base_argument)
return argument
@staticmethod
def unembedding() -> List:
return [
Col_Layer(suffix="lm_head",
weight="weight",
bias="bias",
replace_layer=col_nn.Linear1D_Col,
gather_output=True)
]
def __init__(self) -> None:
super().__init__()