mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-31 16:40:41 +00:00
[Feature] MoE Ulysses Support (#5918)
* moe sp support * moe sp bug solve * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
@@ -3,6 +3,8 @@ import os
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||
@@ -15,6 +17,7 @@ from tests.test_shardformer.test_model._utils import (
|
||||
build_model_from_hybrid_plugin,
|
||||
check_all_grad_tensors,
|
||||
check_loss,
|
||||
check_output_hidden_state,
|
||||
check_weight,
|
||||
get_grad_tensors_for_check,
|
||||
run_forward_backward_with_hybrid_plugin,
|
||||
@@ -27,13 +30,14 @@ os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
||||
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
||||
# TODO: SGD failed for full dp
|
||||
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
|
||||
model_fn, loss_fn, test_config, pluggin_cls=MoeHybridParallelPlugin, optim_class=torch.optim.Adam
|
||||
model_fn, loss_fn, test_config, pluggin_cls=MoeHybridParallelPlugin, optim_class=torch.optim.SGD
|
||||
)
|
||||
|
||||
org_model = org_model.to(torch.float16)
|
||||
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
|
||||
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
||||
)
|
||||
|
||||
print(org_output.last_hidden_state.shape, sharded_output.last_hidden_state.shape)
|
||||
stage_manager = booster.plugin.stage_manager
|
||||
tp_group = booster.plugin.tp_group
|
||||
|
||||
@@ -45,6 +49,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||
atol, rtol = 5e-3, 5e-3
|
||||
|
||||
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol, rtol)
|
||||
|
||||
# unwrap model
|
||||
mixtral_model = unwrap_model(org_model, "MixtralModel", "model")
|
||||
@@ -53,6 +58,22 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||
row_layer_for_check = ["layers[0].self_attn.q_proj", "embed_tokens"]
|
||||
col_layer_for_check = ["layers[0].self_attn.o_proj"]
|
||||
|
||||
# Check the grad when using ZeRO-1 and ZeRO-2
|
||||
if (
|
||||
# booster.plugin.zero_stage in [1, 2]
|
||||
booster.plugin.shard_config.enable_sequence_parallelism
|
||||
and booster.plugin.shard_config.sequence_parallelism_mode == "all_to_all"
|
||||
):
|
||||
rank = dist.get_rank()
|
||||
# for p1, p2 in zip(mixtral_model.parameters(), sharded_optimizer._master_param_groups_of_current_rank[0]):
|
||||
for (n1, p1), (n2, p2) in zip(mixtral_model.named_parameters(), shard_mixtral_model.named_parameters()):
|
||||
try:
|
||||
assert_close(p1.grad, p2.grad, atol=5e-3, rtol=5e-3, check_dtype=False)
|
||||
print(f"{rank=},passed grad: {n1}, {n2}")
|
||||
except Exception as e:
|
||||
print(f"{rank=},failed grad: {n1} {p1.grad[:2,:2]}, {n2} {p2.grad[:2, :2]}")
|
||||
raise e
|
||||
|
||||
# Save gradient tensors for comparison between the original model and the sharded model before optimizer step.
|
||||
grads_to_check = {}
|
||||
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
|
||||
@@ -84,28 +105,49 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||
grads_to_check.update(row_layer_grads)
|
||||
|
||||
# check grads
|
||||
# print(grads_to_check)
|
||||
check_all_grad_tensors(grads_to_check)
|
||||
|
||||
for (n1, p1), (n2, p2) in zip(mixtral_model.named_parameters(), shard_mixtral_model.named_parameters()):
|
||||
try:
|
||||
assert_close(p1, p2, atol=5e-3, rtol=5e-3, check_dtype=False)
|
||||
print(f"{rank=},passed param before step: {n1}, {n2}")
|
||||
except Exception:
|
||||
print(
|
||||
f"{rank=},failed param before step: {n1} {p1[:2,:2] if p1 else None}, {n2} {p2[:2, :2] if p2 else None}"
|
||||
)
|
||||
# optimizer executes step
|
||||
org_optimizer.step()
|
||||
sharded_optimizer.step()
|
||||
|
||||
for (n1, p1), (n2, p2) in zip(mixtral_model.named_parameters(), shard_mixtral_model.named_parameters()):
|
||||
try:
|
||||
assert_close(p1, p2, atol=5e-3, rtol=5e-3, check_dtype=False)
|
||||
print(f"{rank=},passed param after step: {n1}, {n2}")
|
||||
except Exception as e:
|
||||
print(
|
||||
f"{rank=},failed param after step: {n1} {p1 if p1 is not None else None}, {n2} {p2 if p2 is not None else None}"
|
||||
)
|
||||
raise e
|
||||
# check weights
|
||||
if stage_manager is None or stage_manager.is_first_stage():
|
||||
if test_config["precision"] == "fp32":
|
||||
atol, rtol = 2e-4, 1e-3
|
||||
else:
|
||||
atol, rtol = 5e-3, 5e-3
|
||||
check_weight(
|
||||
mixtral_model,
|
||||
shard_mixtral_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
dim=1,
|
||||
verbose=False,
|
||||
)
|
||||
try:
|
||||
check_weight(
|
||||
mixtral_model,
|
||||
shard_mixtral_model,
|
||||
col_layer_for_check,
|
||||
tp_group,
|
||||
atol=atol,
|
||||
rtol=rtol,
|
||||
dim=1,
|
||||
verbose=False,
|
||||
)
|
||||
except Exception as e:
|
||||
rank = dist.get_rank()
|
||||
print(f"{rank=}, Failed config: {test_config}")
|
||||
raise e
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
@@ -113,33 +155,6 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||
@parameterize(
|
||||
"test_config",
|
||||
[
|
||||
{
|
||||
"tp_size": 1,
|
||||
"pp_size": 2,
|
||||
"num_microbatches": 2,
|
||||
"ep_size": 2,
|
||||
"zero_stage": 1,
|
||||
"overlap_communication": False,
|
||||
"precision": "fp32",
|
||||
}, # [dp(4)] + [moe_dp(4)]
|
||||
{
|
||||
"tp_size": 1,
|
||||
"pp_size": 2,
|
||||
"num_microbatches": 2,
|
||||
"ep_size": 2,
|
||||
"zero_stage": 1,
|
||||
"overlap_communication": False,
|
||||
"precision": "fp32",
|
||||
}, # [dp(2) + pp(2)] + [moe_pp(2)]
|
||||
{
|
||||
"tp_size": 2,
|
||||
"pp_size": 2,
|
||||
"num_microbatches": 2,
|
||||
"ep_size": 2,
|
||||
"zero_stage": 1,
|
||||
"overlap_communication": False,
|
||||
"precision": "fp32",
|
||||
}, # [pp(2) + tp(2)] + [pp(2), replicate(2)] pass
|
||||
# {
|
||||
# "tp_size": 1,
|
||||
# "pp_size": 2,
|
||||
@@ -148,7 +163,38 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||
# "zero_stage": 1,
|
||||
# "overlap_communication": False,
|
||||
# "precision": "fp32",
|
||||
# }, # [dp(2) + pp(2)] + [ep(4))]
|
||||
# }, # [dp(4)] + [moe_dp(4)]
|
||||
# {
|
||||
# "tp_size": 1,
|
||||
# "pp_size": 2,
|
||||
# "num_microbatches": 2,
|
||||
# "ep_size": 2,
|
||||
# "zero_stage": 1,
|
||||
# "overlap_communication": False,
|
||||
# "precision": "fp32",
|
||||
# }, # [dp(2) + pp(2)] + [moe_pp(2)]
|
||||
# {
|
||||
# "tp_size": 2,
|
||||
# "pp_size": 2,
|
||||
# "num_microbatches": 2,
|
||||
# "ep_size": 2,
|
||||
# "zero_stage": 1,
|
||||
# "overlap_communication": False,
|
||||
# "precision": "fp32",
|
||||
# }, # [pp(2) + tp(2)] + [pp(2), replicate(2)] pass
|
||||
{ # Ulysess + Flash attention
|
||||
"tp_size": 1,
|
||||
"pp_size": 1,
|
||||
"sp_size": 4,
|
||||
"ep_size": 1,
|
||||
"enable_sequence_parallelism": True,
|
||||
"sequence_parallelism_mode": "all_to_all",
|
||||
"zero_stage": 0,
|
||||
"overlap_communication": False,
|
||||
"precision": "fp16",
|
||||
"initial_scale": 1,
|
||||
"find_unused_parameters": True,
|
||||
},
|
||||
# {
|
||||
# "tp_size": 1,
|
||||
# "pp_size": 1,
|
||||
|
Reference in New Issue
Block a user