mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 10:06:44 +00:00
Migrated project
This commit is contained in:
149
colossalai/nn/lr_scheduler/delayed.py
Normal file
149
colossalai/nn/lr_scheduler/delayed.py
Normal file
@@ -0,0 +1,149 @@
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
|
||||
|
||||
class _enable_get_lr_call:
|
||||
def __init__(self, o):
|
||||
self.o = o
|
||||
|
||||
def __enter__(self):
|
||||
self.o._get_lr_called_within_step = True
|
||||
return self
|
||||
|
||||
def __exit__(self, type, value, traceback):
|
||||
self.o._get_lr_called_within_step = False
|
||||
|
||||
|
||||
class DelayerScheduler(_LRScheduler):
|
||||
""" Starts with a flat lr schedule until it reaches N epochs the applies a scheduler
|
||||
|
||||
:param optimizer: Wrapped optimizer.
|
||||
:type optimizer: torch.optim.Optimizer
|
||||
:param delay_epochs: number of epochs to keep the initial lr until starting aplying the scheduler
|
||||
:type delay_epochs: int
|
||||
:param after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau)
|
||||
:type after_scheduler: torch.optim.lr_scheduler
|
||||
:param last_epoch: The index of last epoch, defaults to -1
|
||||
:type last_epoch: int, optional
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer, delay_epochs, after_scheduler, last_epoch=-1):
|
||||
if delay_epochs < 0:
|
||||
raise ValueError(f'delay_epochs must >= 0, got {delay_epochs}')
|
||||
self.delay_epochs = delay_epochs
|
||||
self.after_scheduler = after_scheduler
|
||||
self.finished = False
|
||||
super().__init__(optimizer, last_epoch)
|
||||
|
||||
def get_lr(self):
|
||||
if self.last_epoch >= self.delay_epochs:
|
||||
if not self.finished:
|
||||
self.after_scheduler.base_lrs = self.base_lrs
|
||||
self.finished = True
|
||||
with _enable_get_lr_call(self.after_scheduler):
|
||||
return self.after_scheduler.get_lr()
|
||||
|
||||
return self.base_lrs
|
||||
|
||||
def step(self, epoch=None):
|
||||
if self.finished:
|
||||
if epoch is None:
|
||||
self.after_scheduler.step(None)
|
||||
else:
|
||||
self.after_scheduler.step(epoch - self.delay_epochs)
|
||||
else:
|
||||
return super(DelayerScheduler, self).step(epoch)
|
||||
|
||||
|
||||
class WarmupScheduler(_LRScheduler):
|
||||
""" Starts with a linear warmup lr schedule until it reaches N epochs the applies a scheduler
|
||||
|
||||
:param optimizer: Wrapped optimizer.
|
||||
:type optimizer: torch.optim.Optimizer
|
||||
:param warmup_epochs: number of epochs to linearly warmup lr until starting aplying the scheduler
|
||||
:type warmup_epochs: int
|
||||
:param after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau)
|
||||
:type after_scheduler: torch.optim.lr_scheduler
|
||||
:param last_epoch: The index of last epoch, defaults to -1
|
||||
:type last_epoch: int, optional
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1):
|
||||
if warmup_epochs < 0:
|
||||
raise ValueError(f'warmup_epochs must >= 0, got {warmup_epochs}')
|
||||
self.warmup_epochs = warmup_epochs
|
||||
self.after_scheduler = after_scheduler
|
||||
self.finished = False
|
||||
super().__init__(optimizer, last_epoch)
|
||||
|
||||
def get_lr(self):
|
||||
if self.last_epoch >= self.warmup_epochs:
|
||||
if not self.finished:
|
||||
self.after_scheduler.base_lrs = self.base_lrs
|
||||
# reset lr to base_lr
|
||||
for group, base_lr in zip(self.optimizer.param_groups, self.base_lrs):
|
||||
group['lr'] = base_lr
|
||||
self.finished = True
|
||||
with _enable_get_lr_call(self.after_scheduler):
|
||||
return self.after_scheduler.get_lr()
|
||||
|
||||
return [(self.last_epoch + 1) / (self.warmup_epochs + 1) * lr for lr in self.base_lrs]
|
||||
|
||||
def step(self, epoch=None):
|
||||
if self.finished:
|
||||
if epoch is None:
|
||||
self.after_scheduler.step(None)
|
||||
else:
|
||||
self.after_scheduler.step(epoch - self.warmup_epochs)
|
||||
else:
|
||||
return super().step(epoch)
|
||||
|
||||
|
||||
class WarmupDelayerScheduler(_LRScheduler):
|
||||
""" Starts with a linear warmup lr schedule until it reaches N epochs and a flat lr schedule until it reaches M epochs the applies a scheduler
|
||||
|
||||
:param optimizer: Wrapped optimizer.
|
||||
:type optimizer: torch.optim.Optimizer
|
||||
:param warmup_epochs: number of epochs to linearly warmup lr until starting aplying the scheduler
|
||||
:type warmup_epochs: int
|
||||
:param delay_epochs: number of epochs to keep the initial lr until starting aplying the scheduler
|
||||
:type delay_epochs: int
|
||||
:param after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau)
|
||||
:type after_scheduler: torch.optim.lr_scheduler
|
||||
:param last_epoch: The index of last epoch, defaults to -1
|
||||
:type last_epoch: int, optional
|
||||
"""
|
||||
|
||||
def __init__(self, optimizer, warmup_epochs, delay_epochs, after_scheduler, last_epoch=-1):
|
||||
if delay_epochs < 0:
|
||||
raise ValueError(f'delay_epochs must >= 0, got {delay_epochs}')
|
||||
if warmup_epochs < 0:
|
||||
raise ValueError(f'warmup_epochs must >= 0, got {warmup_epochs}')
|
||||
self.warmup_epochs = warmup_epochs
|
||||
self.delay_epochs = delay_epochs
|
||||
self.after_scheduler = after_scheduler
|
||||
self.finished = False
|
||||
super().__init__(optimizer, last_epoch)
|
||||
|
||||
def get_lr(self):
|
||||
if self.last_epoch >= self.warmup_epochs + self.delay_epochs:
|
||||
if not self.finished:
|
||||
self.after_scheduler.base_lrs = self.base_lrs
|
||||
# reset lr to base_lr
|
||||
for group, base_lr in zip(self.optimizer.param_groups, self.base_lrs):
|
||||
group['lr'] = base_lr
|
||||
self.finished = True
|
||||
with _enable_get_lr_call(self.after_scheduler):
|
||||
return self.after_scheduler.get_lr()
|
||||
elif self.last_epoch >= self.warmup_epochs:
|
||||
return self.base_lrs
|
||||
|
||||
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
|
||||
|
||||
def step(self, epoch=None):
|
||||
if self.finished:
|
||||
if epoch is None:
|
||||
self.after_scheduler.step(None)
|
||||
else:
|
||||
self.after_scheduler.step(epoch - self.warmup_epochs)
|
||||
else:
|
||||
return super().step(epoch)
|
Reference in New Issue
Block a user