mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 13:00:52 +00:00
Migrated project
This commit is contained in:
227
colossalai/nn/optimizer/fused_sgd.py
Normal file
227
colossalai/nn/optimizer/fused_sgd.py
Normal file
@@ -0,0 +1,227 @@
|
||||
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_sgd.py
|
||||
import torch
|
||||
from torch.optim.optimizer import Optimizer, required
|
||||
|
||||
from colossalai.registry import OPTIMIZERS
|
||||
from ..multi_tensor_apply import multi_tensor_applier
|
||||
|
||||
|
||||
@OPTIMIZERS.register_module
|
||||
class FusedSGD(Optimizer):
|
||||
r"""Implements stochastic gradient descent (optionally with momentum).
|
||||
|
||||
Currently GPU-only. Requires ColossalAI to be installed via
|
||||
``pip install -v --no-cache-dir --global-option="--cuda_ext" ./``.
|
||||
|
||||
This version of fused SGD implements 2 fusions.
|
||||
|
||||
* Fusion of the SGD update's elementwise operations
|
||||
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
|
||||
|
||||
:class:`colossalai.nn.optimizer.FusedSGD` may be used as a drop-in replacement for ``torch.optim.SGD``
|
||||
|
||||
:class:`colossalai.nn.optimizer.FusedSGD` may be used with or without Amp.
|
||||
|
||||
Nesterov momentum is based on the formula from
|
||||
`On the importance of initialization and momentum in deep learning`__.
|
||||
|
||||
Args:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
parameter groups
|
||||
lr (float): learning rate
|
||||
momentum (float, optional): momentum factor (default: 0)
|
||||
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
||||
dampening (float, optional): dampening for momentum (default: 0)
|
||||
nesterov (bool, optional): enables Nesterov momentum (default: False)
|
||||
|
||||
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
|
||||
|
||||
.. note::
|
||||
The implementation of SGD with Momentum/Nesterov subtly differs from
|
||||
Sutskever et. al. and implementations in some other frameworks.
|
||||
Considering the specific case of Momentum, the update can be written as
|
||||
|
||||
.. math::
|
||||
v = \rho * v + g \\
|
||||
p = p - lr * v
|
||||
|
||||
where p, g, v and :math:`\rho` denote the parameters, gradient,
|
||||
velocity, and momentum respectively.
|
||||
This is in contrast to Sutskever et. al. and
|
||||
other frameworks which employ an update of the form
|
||||
|
||||
.. math::
|
||||
v = \rho * v + lr * g \\
|
||||
p = p - v
|
||||
|
||||
The Nesterov version is analogously modified.
|
||||
"""
|
||||
|
||||
def __init__(self, params, lr=required, momentum=0, dampening=0,
|
||||
weight_decay=0, nesterov=False,
|
||||
wd_after_momentum=False,
|
||||
materialize_master_grads=True,
|
||||
set_grad_none=False):
|
||||
if lr is not required and lr < 0.0:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if momentum < 0.0:
|
||||
raise ValueError("Invalid momentum value: {}".format(momentum))
|
||||
if weight_decay < 0.0:
|
||||
raise ValueError(
|
||||
"Invalid weight_decay value: {}".format(weight_decay))
|
||||
|
||||
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
|
||||
weight_decay=weight_decay, nesterov=nesterov)
|
||||
if nesterov and (momentum <= 0 or dampening != 0):
|
||||
raise ValueError(
|
||||
"Nesterov momentum requires a momentum and zero dampening")
|
||||
super(FusedSGD, self).__init__(params, defaults)
|
||||
|
||||
self.wd_after_momentum = wd_after_momentum
|
||||
self.materialize_master_grads = materialize_master_grads
|
||||
self.most_recent_scale = 1.0
|
||||
self.scale_set_by_backward = False
|
||||
self.set_grad_none = set_grad_none
|
||||
|
||||
if multi_tensor_applier.available:
|
||||
import colossal_C
|
||||
# Skip buffer
|
||||
self._dummy_overflow_buf = torch.tensor(
|
||||
[0], dtype=torch.int, device=self.param_groups[0]["params"][0].device)
|
||||
self.multi_tensor_sgd = colossal_C.multi_tensor_sgd
|
||||
else:
|
||||
raise RuntimeError(
|
||||
'apex.optimizers.FusedSGD requires cuda extensions')
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(FusedSGD, self).__setstate__(state)
|
||||
for group in self.param_groups:
|
||||
group.setdefault('nesterov', False)
|
||||
|
||||
def zero_grad(self):
|
||||
if self.set_grad_none:
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
p.grad = None
|
||||
else:
|
||||
super(FusedSGD, self).zero_grad()
|
||||
|
||||
def get_momentums(self, params):
|
||||
momentums = []
|
||||
first_run = True
|
||||
for p in params:
|
||||
param_state = self.state[p]
|
||||
# torch.optim.SGD initializes momentum in the main loop, we have
|
||||
# to do it here, and track whether or not we've done so, so that
|
||||
# momentum application can be skipped in the main kernel.
|
||||
if 'momentum_buffer' not in param_state:
|
||||
first_run = True
|
||||
buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
|
||||
momentums.append(buf)
|
||||
else:
|
||||
first_run = False
|
||||
momentums.append(param_state['momentum_buffer'])
|
||||
return momentums, first_run
|
||||
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
explicit_master_params = (hasattr(self, "_amp_stash") and
|
||||
hasattr(self._amp_stash, "fp32_from_fp16_groups"))
|
||||
|
||||
for gid, group in enumerate(self.param_groups):
|
||||
weight_decay = group['weight_decay']
|
||||
momentum = group['momentum']
|
||||
dampening = group['dampening']
|
||||
nesterov = group['nesterov']
|
||||
|
||||
# For each group, there are 3 possible combinations we need to consider:
|
||||
# grad_type, param_to_update_type, momentum_type, requires_fp16_model_copy
|
||||
# 1. fp16, fp16, fp16, No
|
||||
# 2. fp32, fp32, fp32, No
|
||||
# 3. fp16, fp32, fp32, Yes
|
||||
|
||||
first_runs = [True, True]
|
||||
|
||||
# I think a bit of code divergence in exchange for naming clarity is worthwhile
|
||||
if explicit_master_params:
|
||||
stash = self._amp_stash
|
||||
|
||||
fp32_params = [
|
||||
p for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
|
||||
fp32_grads = [
|
||||
p.grad for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
|
||||
fp32_momentums, first_runs[1] = self.get_momentums(fp32_params)
|
||||
|
||||
if self.materialize_master_grads:
|
||||
fp16_model_params = [p for i, p in enumerate(
|
||||
stash.fp16_groups[gid]) if stash.fp32_from_fp16_groups[gid][i].grad is not None]
|
||||
fp32_from_fp16_grads = [
|
||||
p.grad for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
|
||||
fp32_from_fp16_params = [
|
||||
p for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
|
||||
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(
|
||||
fp32_from_fp16_params)
|
||||
|
||||
fp16_set = [fp32_from_fp16_grads, fp32_from_fp16_params,
|
||||
fp32_from_fp16_momentums, fp16_model_params]
|
||||
else:
|
||||
fp16_model_params = [
|
||||
p for p in stash.fp16_groups[gid] if p.grad is not None]
|
||||
fp16_model_grads = [
|
||||
p.grad for p in stash.fp16_groups[gid] if p.grad is not None]
|
||||
fp32_from_fp16_params = [p for i, p in enumerate(
|
||||
stash.fp32_from_fp16_groups[gid]) if stash.fp16_groups[gid][i].grad is not None]
|
||||
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(
|
||||
fp32_from_fp16_params)
|
||||
|
||||
fp16_set = [fp16_model_grads, fp32_from_fp16_params,
|
||||
fp32_from_fp16_momentums, fp16_model_params]
|
||||
|
||||
launch_sets = [fp16_set, [
|
||||
fp32_grads, fp32_params, fp32_momentums]]
|
||||
else:
|
||||
fp16_params = [p for p in group['params'] if (
|
||||
p.dtype == torch.float16 and p.grad is not None)]
|
||||
fp16_grads = [p.grad for p in group['params'] if (
|
||||
p.dtype == torch.float16 and p.grad is not None)]
|
||||
fp16_momentums, first_runs[0] = self.get_momentums(fp16_params)
|
||||
|
||||
fp32_params = [p for p in group['params'] if (
|
||||
p.dtype == torch.float32 and p.grad is not None)]
|
||||
fp32_grads = [p.grad for p in group['params'] if (
|
||||
p.dtype == torch.float32 and p.grad is not None)]
|
||||
fp32_momentums, first_runs[1] = self.get_momentums(fp32_params)
|
||||
|
||||
launch_sets = [[fp16_grads, fp16_params, fp16_momentums],
|
||||
[fp32_grads, fp32_params, fp32_momentums]]
|
||||
|
||||
for s, (launch_set, first_run) in enumerate(zip(launch_sets, first_runs)):
|
||||
assert len(launch_set[0]) == len(launch_set[1])
|
||||
assert len(launch_set[0]) == len(launch_set[2])
|
||||
if len(launch_set[0]) > 0:
|
||||
multi_tensor_applier(
|
||||
self.multi_tensor_sgd,
|
||||
self._dummy_overflow_buf,
|
||||
launch_set,
|
||||
weight_decay,
|
||||
momentum,
|
||||
dampening,
|
||||
group['lr'],
|
||||
nesterov,
|
||||
first_run,
|
||||
self.wd_after_momentum,
|
||||
1.0 / self.most_recent_scale)
|
||||
|
||||
self.most_recent_scale = 1.0
|
||||
self.scale_set_by_backward = False
|
||||
|
||||
return loss
|
Reference in New Issue
Block a user