mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 02:51:59 +00:00
Migrated project
This commit is contained in:
114
colossalai/nn/optimizer/lamb.py
Normal file
114
colossalai/nn/optimizer/lamb.py
Normal file
@@ -0,0 +1,114 @@
|
||||
"""
|
||||
Adapted from the pytorch-lamb library at https://github.com/cybertronai/pytorch-lamb
|
||||
"""
|
||||
|
||||
import torch
|
||||
from torch.optim import Optimizer
|
||||
|
||||
from colossalai.registry import OPTIMIZERS
|
||||
|
||||
|
||||
@OPTIMIZERS.register_module
|
||||
class Lamb(Optimizer):
|
||||
r"""Implements Lamb algorithm.
|
||||
It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
|
||||
Arguments:
|
||||
params (iterable): iterable of parameters to optimize or dicts defining
|
||||
parameter groups
|
||||
lr (float, optional): learning rate (default: 1e-3)
|
||||
betas (Tuple[float, float], optional): coefficients used for computing
|
||||
running averages of gradient and its square (default: (0.9, 0.999))
|
||||
eps (float, optional): term added to the denominator to improve
|
||||
numerical stability (default: 1e-8)
|
||||
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
||||
adam (bool, optional): always use trust ratio = 1, which turns this into
|
||||
Adam. Useful for comparison purposes.
|
||||
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
|
||||
https://arxiv.org/abs/1904.00962
|
||||
"""
|
||||
|
||||
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6,
|
||||
weight_decay=0, adam=False):
|
||||
if not 0.0 <= lr:
|
||||
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||
if not 0.0 <= eps:
|
||||
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||
if not 0.0 <= betas[0] < 1.0:
|
||||
raise ValueError(
|
||||
"Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||
if not 0.0 <= betas[1] < 1.0:
|
||||
raise ValueError(
|
||||
"Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||
weight_decay=weight_decay)
|
||||
self.adam = adam
|
||||
super(Lamb, self).__init__(params, defaults)
|
||||
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group['params']:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad.data
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError(
|
||||
'Lamb does not support sparse gradients, consider SparseAdam instad.')
|
||||
|
||||
state = self.state[p]
|
||||
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
state['step'] = 0
|
||||
# Exponential moving average of gradient values
|
||||
state['exp_avg'] = torch.zeros_like(p.data)
|
||||
# Exponential moving average of squared gradient values
|
||||
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
||||
|
||||
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||||
beta1, beta2 = group['betas']
|
||||
|
||||
state['step'] += 1
|
||||
|
||||
# Decay the first and second moment running average coefficient
|
||||
# m_t
|
||||
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||
# v_t
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||
|
||||
# Paper v3 does not use debiasing.
|
||||
# bias_correction1 = 1 - beta1 ** state['step']
|
||||
# bias_correction2 = 1 - beta2 ** state['step']
|
||||
# Apply bias to lr to avoid broadcast.
|
||||
# * math.sqrt(bias_correction2) / bias_correction1
|
||||
step_size = group['lr']
|
||||
|
||||
weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10)
|
||||
|
||||
adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
|
||||
if group['weight_decay'] != 0:
|
||||
adam_step.add_(p.data, alpha=group['weight_decay'])
|
||||
|
||||
adam_norm = adam_step.pow(2).sum().sqrt()
|
||||
if weight_norm == 0 or adam_norm == 0:
|
||||
trust_ratio = 1
|
||||
else:
|
||||
trust_ratio = weight_norm / adam_norm
|
||||
state['weight_norm'] = weight_norm
|
||||
state['adam_norm'] = adam_norm
|
||||
state['trust_ratio'] = trust_ratio
|
||||
if self.adam:
|
||||
trust_ratio = 1
|
||||
|
||||
p.data.add_(adam_step, alpha=-step_size * trust_ratio)
|
||||
|
||||
return loss
|
Reference in New Issue
Block a user