mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-24 03:03:37 +00:00
Migrated project
This commit is contained in:
185
colossalai/trainer/hooks/_metric_hook.py
Normal file
185
colossalai/trainer/hooks/_metric_hook.py
Normal file
@@ -0,0 +1,185 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.registry import HOOKS
|
||||
from colossalai.utils import is_no_pp_or_last_stage
|
||||
from ._base_hook import BaseHook
|
||||
from .._trainer import Trainer
|
||||
from ..metric import Loss, Accuracy2D, Accuracy, Accuracy2p5D, Accuracy3D
|
||||
|
||||
|
||||
class MetricHook(BaseHook):
|
||||
"""Specialized hook classes for :class:`Metric`.
|
||||
Some help metric collectors initialize, reset and
|
||||
update their states. Others are used to display and
|
||||
record the metric.
|
||||
|
||||
:param trainer: Trainer attached with current hook
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front
|
||||
:type trainer: Trainer
|
||||
:type priority: int
|
||||
"""
|
||||
|
||||
def __init__(self, trainer: Trainer, priority: int):
|
||||
super().__init__(trainer, priority)
|
||||
self._is_stage_to_log = is_no_pp_or_last_stage()
|
||||
self._check_metric_states_initialization()
|
||||
|
||||
def _check_metric_states_initialization(self):
|
||||
if 'metrics' not in self.trainer.states:
|
||||
self.init_runner_states('metrics', dict(train={}, test={}))
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
class LossHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Loss`.
|
||||
|
||||
:param trainer: Trainer attached with current hook
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front
|
||||
:type trainer: Trainer
|
||||
:type priority: int, optional
|
||||
"""
|
||||
|
||||
def __init__(self, trainer: Trainer, priority: int = 10):
|
||||
super().__init__(trainer, priority)
|
||||
|
||||
if self._is_stage_to_log:
|
||||
self.metric = Loss(epoch_only=False)
|
||||
|
||||
# register the metric calculator
|
||||
self.trainer.states['metrics']['train'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
self.trainer.states['metrics']['test'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
|
||||
def before_train_epoch(self):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.reset()
|
||||
|
||||
def after_train_iter(self, logits, label, loss):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.update(loss)
|
||||
|
||||
def before_test_epoch(self):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.reset()
|
||||
|
||||
def after_test_iter(self, logits, label, loss):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.update(loss)
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
class Accuracy2DHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Accuracy2D`.
|
||||
It acts the same as :class:`AccuracyHook`.
|
||||
|
||||
:param trainer: Trainer attached with current hook
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front
|
||||
:type trainer: Trainer
|
||||
:type priority: int, optional
|
||||
"""
|
||||
|
||||
def __init__(self, trainer: Trainer, priority: int = 10):
|
||||
super().__init__(trainer, priority)
|
||||
|
||||
if self._is_stage_to_log:
|
||||
self.metric = Accuracy2D(epoch_only=True)
|
||||
|
||||
# register the metric
|
||||
self.trainer.states['metrics']['test'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
|
||||
def before_test(self):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.reset()
|
||||
|
||||
def after_test_iter(self, logits, label, *args):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.update(logits, label)
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
class Accuracy2p5DHook(MetricHook):
|
||||
def __init__(self, trainer: Trainer, priority: int = 10):
|
||||
super().__init__(trainer, priority)
|
||||
|
||||
if self._is_stage_to_log:
|
||||
self.metric = Accuracy2p5D(epoch_only=True)
|
||||
|
||||
# register the metric
|
||||
self.trainer.states['metrics']['test'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
|
||||
def before_test(self):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.reset()
|
||||
|
||||
def after_test_iter(self, logits, label, *args):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.update(logits, label)
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
class Accuracy3DHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Accuracy3D`.
|
||||
|
||||
:param trainer: Trainer attached with current hook
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front
|
||||
:type trainer: Trainer
|
||||
:type priority: int
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
trainer: Trainer,
|
||||
input_parallel_mode: ParallelMode,
|
||||
weight_parallel_mode: ParallelMode,
|
||||
priority: int = 10):
|
||||
super().__init__(trainer, priority)
|
||||
|
||||
if self._is_stage_to_log:
|
||||
self.metric = Accuracy3D(epoch_only=True,
|
||||
input_parallel_mode=input_parallel_mode,
|
||||
weight_parallel_mode=weight_parallel_mode)
|
||||
|
||||
# register the metric
|
||||
self.trainer.states['metrics']['test'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
|
||||
def before_test(self):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.reset()
|
||||
|
||||
def after_test_iter(self, logits, label, *args):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.update(logits, label)
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
class AccuracyHook(MetricHook):
|
||||
"""Specialized hook class for :class:`Accuracy`.
|
||||
|
||||
:param trainer: Trainer attached with current hook
|
||||
:param priority: Priority in the printing, hooks with small priority will be printed in front
|
||||
:type trainer: Trainer
|
||||
:type priority: int
|
||||
"""
|
||||
|
||||
def __init__(self, trainer: Trainer, priority: int = 10):
|
||||
super().__init__(trainer, priority)
|
||||
|
||||
if self._is_stage_to_log:
|
||||
self.metric = Accuracy(epoch_only=True)
|
||||
|
||||
# register the metric
|
||||
self.trainer.states['metrics']['test'][
|
||||
self.metric.__class__.__name__] = self.metric
|
||||
|
||||
def before_test(self):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.reset()
|
||||
|
||||
def after_test_iter(self, logits, label, *args):
|
||||
if self._is_stage_to_log:
|
||||
self.metric.update(logits, label)
|
Reference in New Issue
Block a user