mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-12-07 09:48:27 +00:00
Migrated project
This commit is contained in:
86
tests/test_data/test_data_parallel_sampler.py
Normal file
86
tests/test_data/test_data_parallel_sampler.py
Normal file
@@ -0,0 +1,86 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import os
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
import torch.cuda
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import colossalai
|
||||
from colossalai.builder import build_dataset, build_data_sampler
|
||||
from colossalai.context.parallel_mode import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
CONFIG = dict(
|
||||
train_data=dict(
|
||||
dataset=dict(
|
||||
type='CIFAR10Dataset',
|
||||
root=Path(os.environ['DATA']),
|
||||
train=True,
|
||||
download=True,
|
||||
transform_pipeline=[
|
||||
dict(type='ToTensor'),
|
||||
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
||||
]
|
||||
),
|
||||
dataloader=dict(
|
||||
num_workers=2,
|
||||
batch_size=8,
|
||||
sampler=dict(
|
||||
type='DataParallelSampler',
|
||||
)
|
||||
)
|
||||
),
|
||||
parallel=dict(
|
||||
pipeline=dict(size=1),
|
||||
tensor=dict(size=1, mode=None),
|
||||
),
|
||||
seed=1024,
|
||||
)
|
||||
|
||||
|
||||
def run_data_sampler(local_rank, world_size):
|
||||
dist_args = dict(
|
||||
config=CONFIG,
|
||||
local_rank=local_rank,
|
||||
world_size=world_size,
|
||||
backend='gloo',
|
||||
port='29503',
|
||||
host='localhost'
|
||||
)
|
||||
colossalai.init_dist(**dist_args)
|
||||
print('finished initialization')
|
||||
|
||||
dataset = build_dataset(gpc.config.train_data.dataset)
|
||||
sampler_cfg = gpc.config.train_data.dataloader.pop('sampler')
|
||||
sampler = build_data_sampler(sampler_cfg, dataset)
|
||||
dataloader = DataLoader(dataset=dataset, sampler=sampler, **gpc.config.train_data.dataloader)
|
||||
data_iter = iter(dataloader)
|
||||
img, label = data_iter.next()
|
||||
img = img[0]
|
||||
|
||||
if gpc.get_local_rank(ParallelMode.DATA) != 0:
|
||||
img_to_compare = img.clone()
|
||||
else:
|
||||
img_to_compare = img
|
||||
dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA))
|
||||
|
||||
if gpc.get_local_rank(ParallelMode.DATA) != 0:
|
||||
assert not torch.equal(img,
|
||||
img_to_compare), 'Same image was distributed across ranks but expected it to be different'
|
||||
|
||||
|
||||
@pytest.mark.cpu
|
||||
def test_data_sampler():
|
||||
world_size = 4
|
||||
test_func = partial(run_data_sampler, world_size=world_size)
|
||||
mp.spawn(test_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_data_sampler()
|
||||
Reference in New Issue
Block a user