Migrated project

This commit is contained in:
zbian
2021-10-28 18:21:23 +02:00
parent 2ebaefc542
commit 404ecbdcc6
409 changed files with 35853 additions and 0 deletions

View File

@@ -0,0 +1,42 @@
import os
from pathlib import Path
BATCH_SIZE = 128
IMG_SIZE = 224
DIM = 768
NUM_CLASSES = 10
NUM_ATTN_HEADS = 12
# resnet 18
model = dict(type='VanillaResNet',
block_type='ResNetBasicBlock',
layers=[2, 2, 2, 2],
num_cls=10)
parallel = dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None)
)
train_data = dict(dataset=dict(type='CIFAR10Dataset',
root=Path(os.environ['DATA']),
download=True,
transform_pipeline=[
dict(type='Resize',
size=(IMG_SIZE, IMG_SIZE)),
dict(type='ToTensor'),
dict(type='Normalize',
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5))
]),
dataloader=dict(batch_size=BATCH_SIZE,
pin_memory=True,
num_workers=4,
drop_last=True))
optimizer = dict(type='Adam', lr=0.001)
loss = dict(type='CrossEntropyLoss')
# set_device_func = lambda global_rank, world_size: global_rank % 4
seed = 1024

View File

@@ -0,0 +1,45 @@
import os
from pathlib import Path
from colossalai.engine import AMP_TYPE
BATCH_SIZE = 128
IMG_SIZE = 224
DIM = 768
NUM_CLASSES = 10
NUM_ATTN_HEADS = 12
# resnet 18
model = dict(type='VanillaResNet',
block_type='ResNetBasicBlock',
layers=[2, 2, 2, 2],
num_cls=10)
parallel = dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None)
)
train_data = dict(dataset=dict(type='CIFAR10Dataset',
root=Path(os.environ['DATA']),
download=True,
transform_pipeline=[
dict(type='Resize',
size=(IMG_SIZE, IMG_SIZE)),
dict(type='ToTensor'),
dict(type='Normalize',
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5))
]),
dataloader=dict(batch_size=BATCH_SIZE,
pin_memory=True,
num_workers=4,
drop_last=True))
optimizer = dict(type='Adam', lr=0.001)
loss = dict(type='CrossEntropyLoss')
fp16 = dict(mode=AMP_TYPE.APEX)
# set_device_func = lambda global_rank, world_size: global_rank % 4
seed = 1024

View File

@@ -0,0 +1,45 @@
import os
from pathlib import Path
from colossalai.engine import AMP_TYPE
BATCH_SIZE = 128
IMG_SIZE = 224
DIM = 768
NUM_CLASSES = 10
NUM_ATTN_HEADS = 12
# resnet 18
model = dict(type='VanillaResNet',
block_type='ResNetBasicBlock',
layers=[2, 2, 2, 2],
num_cls=10)
parallel = dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None)
)
train_data = dict(dataset=dict(type='CIFAR10Dataset',
root=Path(os.environ['DATA']),
download=True,
transform_pipeline=[
dict(type='Resize',
size=(IMG_SIZE, IMG_SIZE)),
dict(type='ToTensor'),
dict(type='Normalize',
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5))
]),
dataloader=dict(batch_size=BATCH_SIZE,
pin_memory=True,
num_workers=4,
drop_last=True))
optimizer = dict(type='Adam', lr=0.001)
loss = dict(type='CrossEntropyLoss')
fp16 = dict(mode=AMP_TYPE.TORCH)
# set_device_func = lambda global_rank, world_size: global_rank % 4
seed = 1024

View File

@@ -0,0 +1,48 @@
import os
from pathlib import Path
BATCH_SIZE = 128
IMG_SIZE = 224
DIM = 768
NUM_CLASSES = 10
NUM_ATTN_HEADS = 12
# resnet 18
model = dict(type='VanillaResNet',
block_type='ResNetBasicBlock',
layers=[2, 2, 2, 2],
num_cls=10)
train_data = dict(dataset=dict(type='CIFAR10Dataset',
root=Path(os.environ['DATA']),
download=True,
transform_pipeline=[
dict(type='Resize',
size=(IMG_SIZE, IMG_SIZE)),
dict(type='ToTensor'),
dict(type='Normalize',
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5))
]),
dataloader=dict(batch_size=BATCH_SIZE,
pin_memory=True,
num_workers=4,
drop_last=True))
optimizer = dict(type='Adam', lr=0.001)
loss = dict(type='CrossEntropyLoss')
parallel = dict(
pipeline=dict(size=4),
tensor=dict(size=1, mode=None)
)
schedule = dict(
num_microbatches=4
)
num_pipeling_batches = 2
seed = 1024
lr_scheduler = dict(type='LinearWarmupLR', warmup_steps=5)
num_epochs = 10

View File

@@ -0,0 +1,4 @@
#!/usr/bin/env sh
test_file=$1
python $test_file --local_rank $SLURM_PROCID --world_size $SLURM_NPROCS --host $HOST --port 29500

View File

@@ -0,0 +1,54 @@
# !/usr/bin/env python
# -*- encoding: utf-8 -*-
import os.path as osp
import pytest
import torch
from colossalai import initialize
from colossalai.core import global_context as gpc
from colossalai.engine import Engine
from colossalai.logging import get_global_dist_logger
from colossalai.utils import report_memory_usage
NUM_BATCH = 128
NUM_MICRO = 6
BATCH_SIZE = 32
SEQ_LENGTH = 128
HIDDEN_SIZE = 512
DIR_PATH = osp.dirname(osp.realpath(__file__))
NO_PIPE_CONFIG_PATH = osp.join(DIR_PATH, '../configs/non_pipeline_resnet_apex_amp.py')
def run_no_pipeline(config):
model, train_dataloader, test_dataloader, criterion, optimizer, schedule, lr_scheduler = initialize(config)
logger = get_global_dist_logger()
rank = torch.distributed.get_rank()
engine = Engine(model=model,
train_dataloader=train_dataloader,
criterion=criterion,
optimizer=optimizer,
schedule=schedule)
engine.train()
logger.info('lr = %g' % engine.get_lr())
output, label, loss = engine.step()
logger.info('Rank {} returns: {}'.format(rank, loss.item()))
logger.info('lr = %g' % engine.get_lr())
gpc.destroy()
logger.info('Test engine finished')
report_memory_usage("After testing")
@pytest.mark.skip("This test should be invoked using the test.sh provided")
@pytest.mark.dist
def test_engine():
run_no_pipeline(NO_PIPE_CONFIG_PATH)
if __name__ == '__main__':
test_engine()

View File

@@ -0,0 +1,57 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os.path as osp
import pytest
import torch
from colossalai import initialize
from colossalai.core import global_context as gpc
from colossalai.engine import Engine
from colossalai.logging import get_global_dist_logger
from colossalai.utils import report_memory_usage
NUM_BATCH = 128
NUM_MICRO = 6
BATCH_SIZE = 32
SEQ_LENGTH = 128
HIDDEN_SIZE = 512
DIR_PATH = osp.dirname(osp.realpath(__file__))
NO_PIPE_CONFIG_PATH = osp.join(DIR_PATH, '../configs/non_pipeline_resnet.py')
def test_no_pipeline(config):
print('Test no pipeline engine start')
model, train_dataloader, test_dataloader, criterion, optimizer, schedule, lr_scheduler = initialize(config)
logger = get_global_dist_logger()
rank = torch.distributed.get_rank()
engine = Engine(model=model,
train_dataloader=train_dataloader,
criterion=criterion,
optimizer=optimizer,
schedule=schedule)
engine.train()
logger.info('lr = %g' % engine.get_lr())
output, label, loss = engine.step()
logger.info('Rank {} returns: {}'.format(rank, loss.item()))
logger.info('lr = %g' % engine.get_lr())
gpc.destroy()
logger.info('Test engine finished')
report_memory_usage("After testing")
@pytest.mark.skip("This test should be invoked using the test.sh provided")
@pytest.mark.dist
def test_engine():
test_no_pipeline(NO_PIPE_CONFIG_PATH)
if __name__ == '__main__':
test_engine()

View File

@@ -0,0 +1,57 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os.path as osp
import pytest
import torch
from colossalai import initialize
from colossalai.core import global_context as gpc
from colossalai.engine import Engine
from colossalai.logging import get_global_dist_logger
from colossalai.utils import report_memory_usage
NUM_BATCH = 128
NUM_MICRO = 6
BATCH_SIZE = 32
SEQ_LENGTH = 128
HIDDEN_SIZE = 512
DIR_PATH = osp.dirname(osp.realpath(__file__))
NO_PIPE_CONFIG_PATH = osp.join(DIR_PATH, '../configs/non_pipeline_resnet_torch_amp.py')
def test_no_pipeline(config):
print('Test no pipeline engine start')
model, train_dataloader, test_dataloader, criterion, optimizer, schedule, lr_scheduler = initialize(config)
logger = get_global_dist_logger()
rank = torch.distributed.get_rank()
engine = Engine(model=model,
train_dataloader=train_dataloader,
criterion=criterion,
optimizer=optimizer,
schedule=schedule)
engine.train()
logger.info('lr = %g' % engine.get_lr())
output, label, loss = engine.step()
logger.info('Rank {} returns: {}'.format(rank, loss.item()))
logger.info('lr = %g' % engine.get_lr())
gpc.destroy()
logger.info('Test engine finished')
report_memory_usage("After testing")
@pytest.mark.skip("This test should be invoked using the test.sh provided")
@pytest.mark.dist
def test_engine():
test_no_pipeline(NO_PIPE_CONFIG_PATH)
if __name__ == '__main__':
test_engine()

View File

@@ -0,0 +1,232 @@
# referenced from Megatron and used to testify communication
import os.path as osp
import pytest
import torch
from torch.utils.data import DataLoader
from colossalai.builder import ModelInitializer, build_dataset, build_optimizer, build_loss
from colossalai.communication import p2p as p2p_communication
from colossalai.communication.utils import send_tensor_meta, recv_tensor_meta
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import initialize
from colossalai.utils import print_rank_0, get_current_device
NUM_BATCH = 128
NUM_MICRO = 6
def get_num_microbatches():
return NUM_MICRO
def to_cuda(data):
if isinstance(data, (tuple, list)):
data = data[0].to(get_current_device())
else:
data = data.to(get_current_device())
return data
def step_func(loss):
def _step_func(input_tensor, model):
output = model(input_tensor)
if isinstance(output, (tuple, list)):
if len(output) > 1:
raise NotImplementedError("Multiple output!!!")
else:
output = output[0]
return output, loss
return _step_func
def forward_step(forward_step_func, data_iterator, model, input_tensor, losses_reduced):
"""Forward step for passed-in model.
If first stage, input tensor is obtained from data_iterator, otherwise
passed-in input_tensor is used.
Returns output tensor."""
if input_tensor is None:
data, label = data_iterator.next()
input_tensor = to_cuda(data)
output_tensor, loss_func = forward_step_func(input_tensor, model)
if gpc.is_last_rank(ParallelMode.PIPELINE):
data, label = data_iterator.next()
label = to_cuda(label)
output_tensor = loss_func(output_tensor, label) / get_num_microbatches()
losses_reduced.append(output_tensor)
return output_tensor
def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
"""Backward step through passed-in output tensor.
If last stage, output_tensor_grad is None, otherwise gradient of loss
with respect to stage's output tensor.
Returns gradient of loss with respect to input tensor (None if first
stage)."""
# Retain the grad on the input_tensor.
if input_tensor is not None:
input_tensor.retain_grad()
# Backward pass.
torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)
# Collect the grad of the input_tensor.
input_tensor_grad = None
if input_tensor is not None:
input_tensor_grad = input_tensor.grad
return input_tensor_grad
def forward_backward_pipelining_without_interleaving(forward_step_func, data_iterator,
model, optimizer, forward_only):
"""Run non-interleaved 1F1B schedule, with communication between pipeline
stages.
Returns dictionary with losses if the last stage, empty dict otherwise."""
# Compute number of warmup microbatches.
num_microbatches = get_num_microbatches()
num_warmup_microbatches = \
(gpc.get_world_size(ParallelMode.PIPELINE) -
gpc.get_local_rank(ParallelMode.PIPELINE) - 1)
num_warmup_microbatches = min(
num_warmup_microbatches,
num_microbatches)
num_microbatches_remaining = \
num_microbatches - num_warmup_microbatches
# Input, output tensors only need to be saved when doing backward passes
input_tensors = None
output_tensors = None
if not forward_only:
input_tensors = []
output_tensors = []
losses_reduced = []
# Used for tensor meta information communication
ft_shape = None
bt_shape = None
fs_checker = True
# Run warmup forward passes.
for i in range(num_warmup_microbatches):
if not gpc.is_first_rank(ParallelMode.PIPELINE):
ft_shape = recv_tensor_meta(ft_shape)
input_tensor = p2p_communication.recv_forward(ft_shape)
output_tensor = forward_step(forward_step_func, data_iterator, model,
input_tensor, losses_reduced)
if not gpc.is_last_rank(ParallelMode.PIPELINE):
bt_shape = output_tensor.shape
fs_checker = send_tensor_meta(output_tensor, fs_checker)
p2p_communication.send_forward(output_tensor)
if not forward_only:
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
# Before running 1F1B, need to receive first forward tensor.
# If all microbatches are run in warmup / cooldown phase, then no need to
# receive this tensor here.
if num_microbatches_remaining > 0:
if not gpc.is_first_rank(ParallelMode.PIPELINE):
ft_shape = recv_tensor_meta(ft_shape)
input_tensor = p2p_communication.recv_forward(ft_shape)
# Run 1F1B in steady state.
for i in range(num_microbatches_remaining):
last_iteration = (i == (num_microbatches_remaining - 1))
output_tensor = forward_step(forward_step_func, data_iterator, model,
input_tensor, losses_reduced)
if forward_only:
p2p_communication.send_forward(output_tensor)
if not last_iteration:
input_tensor = p2p_communication.recv_forward(ft_shape)
else:
output_tensor_grad = \
p2p_communication.send_forward_recv_backward(output_tensor, bt_shape)
# Add input_tensor and output_tensor to end of list.
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
# Pop input_tensor and output_tensor from the start of the list for
# the backward pass.
input_tensor = input_tensors.pop(0)
output_tensor = output_tensors.pop(0)
input_tensor_grad = \
backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad)
if last_iteration:
input_tensor = None
p2p_communication.send_backward(input_tensor_grad)
else:
input_tensor = \
p2p_communication.send_backward_recv_forward(input_tensor_grad, ft_shape)
# Run cooldown backward passes.
if not forward_only:
for i in range(num_warmup_microbatches):
input_tensor = input_tensors.pop(0)
output_tensor = output_tensors.pop(0)
output_tensor_grad = p2p_communication.recv_backward(bt_shape)
input_tensor_grad = \
backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad)
p2p_communication.send_backward(input_tensor_grad)
return losses_reduced
DIR_PATH = osp.dirname(osp.realpath(__file__))
CONFIG_PATH = osp.join(DIR_PATH, '../configs/pipeline_vanilla_vit.py')
@pytest.mark.skip(reason="This is only for debugging purpose, please ignore this test")
@pytest.mark.dist
def test_schedule():
initialize(CONFIG_PATH)
# build model
model = ModelInitializer(gpc.config.model, 1).model_initialize()
print_rank_0('model is created')
# keep the same sampler for all process
torch.manual_seed(1331)
dataset = build_dataset(gpc.config.data.dataset)
dataloader = DataLoader(dataset=dataset, **gpc.config.data.dataloader)
print_rank_0('train data is created')
# build optimizer and loss
optim = build_optimizer(gpc.config.optimizer, model)
loss = build_loss(gpc.config.loss)
print_rank_0('optim and loss is created')
forward_backward_pipelining_without_interleaving(
step_func(loss),
iter(dataloader),
model,
optim,
False
)
gpc.destroy()
print_rank_0('training finished')
if __name__ == '__main__':
test_schedule()

View File

@@ -0,0 +1,149 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import pytest
import torch
import torch.distributed as dist
from colossalai.communication import (recv_backward, recv_forward,
recv_tensor_meta, send_backward,
send_backward_recv_forward, send_forward,
send_forward_recv_backward,
send_tensor_meta)
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import init_dist, parse_args
from colossalai.logging import get_global_dist_logger
from colossalai.utils import get_current_device
BATCH_SIZE = 32
SEQ_LENGTH = 128
HIDDEN_SIZE = 512
CONFIG = dict(
parallel=dict(
pipeline=dict(size=4),
tensor=dict(size=1, mode=None)
),
seed=1024
)
def check_equal(A, B):
return torch.allclose(A, B, rtol=1e-5, atol=1e-3)
def check_forward(output_tensor, rank, logger):
dist.barrier()
if gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = output_tensor.clone()
else:
tensor = recv_forward(output_tensor.shape)
logger.info('Rank {} received forward. Correct tensor: {}'.format(
rank, check_equal(tensor, output_tensor)))
if not gpc.is_last_rank(ParallelMode.PIPELINE):
send_forward(tensor)
logger.info('Rank {} sent forward.'.format(rank))
def check_backward(output_grad, rank, logger):
dist.barrier()
if gpc.is_last_rank(ParallelMode.PIPELINE):
grad = output_grad.clone()
else:
grad = recv_backward(output_grad.shape)
logger.info('Rank {} received backward. Correct grad: {}'.format(
rank, check_equal(grad, output_grad)))
if not gpc.is_first_rank(ParallelMode.PIPELINE):
send_backward(grad)
logger.info('Rank {} sent backward.'.format(rank))
def check_forward_backward(output_tensor, output_grad, rank, logger):
dist.barrier()
if not gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = send_backward_recv_forward(output_grad, output_tensor.shape)
logger.info(
'Rank {} sent backward received forward. Correct tensor: {}'.
format(rank, check_equal(tensor, output_tensor)))
if not gpc.is_last_rank(ParallelMode.PIPELINE):
grad = send_forward_recv_backward(output_tensor, output_grad.shape)
logger.info(
'Rank {} sent forward received backward. Correct grad: {}'.format(
rank, check_equal(grad, output_grad)))
def check_op(size, rank, prev_rank, next_rank, up_group, down_group, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
# recv_tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
if rank % 2 == 0:
need_meta = True
need_meta = send_tensor_meta(tensor, need_meta)
logger.info('Rank {} shape sent (need meta: {}).'.format(
rank, need_meta))
req = dist.broadcast(tensor, src=rank, group=down_group, async_op=True)
req.wait()
out = tensor.clone()
logger.info('Rank {} test op: tensor sent.'.format(rank))
else:
recv_tensor_shape = recv_tensor_meta(None)
logger.info('Rank {} shape received. Correct shape: {}'.format(
rank, tensor_shape == recv_tensor_shape))
out = torch.empty(recv_tensor_shape, dtype=dtype, device=device)
req = dist.broadcast(out, src=prev_rank, group=up_group, async_op=True)
req.wait()
logger.info('Rank {} test op: received tensor ({})'.format(
rank, out.shape))
logger.info('Rank {} test op. Correct tensor: {}'.format(
rank, check_equal(tensor, out)))
def test_comm(size, rank, prev_rank, next_rank, up_group, down_group, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
check_op(size, rank, prev_rank, next_rank, up_group, down_group, logger)
check_forward(tensor, rank, logger)
check_backward(grad, rank, logger)
check_forward_backward(tensor, grad, rank, logger)
@pytest.mark.skip("This test should be invoked using the test.sh provided")
@pytest.mark.dist
def test_main():
args = parse_args()
world_size = args.world_size
init_dist(CONFIG)
logger = get_global_dist_logger()
rank = gpc.get_global_rank()
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
up_ranks = gpc.get_ranks_in_group(ParallelMode.PIPELINE_PREV)
up_group = gpc.get_group(ParallelMode.PIPELINE_PREV)
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
down_ranks = gpc.get_ranks_in_group(ParallelMode.PIPELINE_NEXT)
down_group = gpc.get_group(ParallelMode.PIPELINE_NEXT)
logger.info(
'Rank {0}: prev rank {1} (up: {2}), next rank {3} (down: {4})'.format(
rank, prev_rank, up_ranks, next_rank, down_ranks))
logger.info('Distributed environment is initialzied.')
test_comm(world_size, rank, prev_rank, next_rank, up_group, down_group,
logger)
if __name__ == '__main__':
test_main()

View File

@@ -0,0 +1,37 @@
import os.path as osp
import pytest
import torch
from torch.utils.data import DataLoader
from colossalai.builder import build_dataset, ModelInitializer
from colossalai.core import global_context
from colossalai.initialize import init_dist
from colossalai.logging import get_global_dist_logger
DIR_PATH = osp.dirname(osp.realpath(__file__))
CONFIG_PATH = osp.join(DIR_PATH, '../configs/pipeline_vanilla_resnet.py')
@pytest.mark.skip("This test should be invoked using the test.sh provided")
@pytest.mark.dist
def test_partition():
init_dist(CONFIG_PATH)
logger = get_global_dist_logger()
logger.info('finished initialization')
# build model
model = ModelInitializer(global_context.config.model, 1, verbose=True).model_initialize()
logger.info('model is created')
dataset = build_dataset(global_context.config.train_data.dataset)
dataloader = DataLoader(dataset=dataset, **global_context.config.train_data.dataloader)
logger.info('train data is created')
global_context.destroy()
torch.cuda.synchronize()
logger.info('training finished')
if __name__ == '__main__':
test_partition()

View File

@@ -0,0 +1,38 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os.path as osp
import pytest
from colossalai.core import global_context as gpc
from colossalai.initialize import initialize
from colossalai.logging import get_global_dist_logger
NUM_BATCH = 128
BATCH_SIZE = 32
SEQ_LENGTH = 128
HIDDEN_SIZE = 512
DIR_PATH = osp.dirname(osp.realpath(__file__))
CONFIG_PATH = osp.join(DIR_PATH, '../configs/pipeline_vanilla_resnet.py')
@pytest.mark.skip("This test should be invoked using the test.sh provided")
@pytest.mark.dist
def test_schedule():
model, train_dataloader, test_dataloader, criterion, optimizer, schedule, lr_scheduler = initialize(CONFIG_PATH)
logger = get_global_dist_logger()
schedule.zero_grad()
output, label, losses = schedule.forward_backward_step(forward_only=False)
schedule.step()
logger.info('losses: {}'.format([loss.item() for loss in losses]))
gpc.destroy()
logger.info('training finished')
if __name__ == '__main__':
test_schedule()

View File

@@ -0,0 +1,54 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os.path as osp
import pytest
import torch
from colossalai import initialize
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.engine import Engine
from colossalai.logging import get_global_dist_logger
NUM_BATCH = 128
BATCH_SIZE = 32
SEQ_LENGTH = 128
HIDDEN_SIZE = 512
DIR_PATH = osp.dirname(osp.realpath(__file__))
PIPE_CONFIG_PATH = osp.join(DIR_PATH, '../configs/pipeline_vanilla_resnet.py')
def run_pipeline(config):
model, train_dataloader, test_dataloader, criterion, optimizer, schedule, lr_scheduler = initialize(config)
logger = get_global_dist_logger()
rank = torch.distributed.get_rank()
engine = Engine(model=model,
train_dataloader=train_dataloader,
criterion=criterion,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
schedule=schedule)
engine.train()
logger.info('lr = %g' % engine.get_lr())
outputs, labels, loss = engine.step()
if gpc.is_last_rank(ParallelMode.PIPELINE):
logger.info('losses: {}'.format(rank, loss.item()))
logger.info('lr = %g' % engine.get_lr())
gpc.destroy()
logger.info('Test engine pipeline finished')
@pytest.mark.skip("This test should be invoked using the test.sh provided")
@pytest.mark.dist
def test_engine():
run_pipeline(PIPE_CONFIG_PATH)
if __name__ == '__main__':
test_engine()