Migrated project

This commit is contained in:
zbian
2021-10-28 18:21:23 +02:00
parent 2ebaefc542
commit 404ecbdcc6
409 changed files with 35853 additions and 0 deletions

View File

@@ -0,0 +1,15 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
DEPTH = 2
BATCH_SIZE = 512
SEQ_LENGTH = 128
HIDDEN_SIZE = 512
NUM_CLASSES = 10
NUM_BLOCKS = 6
IMG_SIZE = 32
def check_equal(A, B):
return torch.allclose(A, B, rtol=1e-5, atol=1e-2)

View File

@@ -0,0 +1,22 @@
#!/bin/bash
python -m torch.distributed.launch test_2d.py --nproc_per_node 8 test_3d.py --host $HOST --port 29516 --world_size 8
# expected test output
# distributed environment initialized
# AB forward: pass
# AB backward: pass
# ABT forward: pass
# ABT backward: pass
# ATB forward: pass
# ATB backward: pass
# linear backward: pass
# linear backward: pass
# layer norm forward: pass
# layer norm backward: pass
# self attention forward: pass
# self attention backward: pass
# mlp forward: pass
# mlp backward: pass
# transformerlayer forward: pass
# transformerlayer backward: pass

View File

@@ -0,0 +1,58 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from colossalai.initialize import init_dist
from test_layer import *
from test_operation import *
CONFIG = dict(parallel=dict(pipeline=1, tensor=dict(mode='3d', size=8)),
seed=0)
def check_operations():
check_AB()
check_ABT()
check_ATB()
check_add()
check_mul()
check_sum()
# check_pooler()
def check_layer():
logger = get_global_dist_logger()
liear_fwd_time, linear_bwd_time = check_linear()
norm_fwd_time, norm_bwd_time = check_layernorm()
attn_fwd_time, attn_bwd_time = check_attention()
mlp_fwd_time, mlp_bwd_time = check_mlp()
head_fwd_time, head_bwd_time = check_head()
embed_fwd_time, embed_bwd_time = check_embed()
loss_fwd_time, loss_bwd_time = check_loss()
block_fwd_time = norm_fwd_time + attn_fwd_time + norm_fwd_time + mlp_fwd_time
block_bwd_time = norm_bwd_time + attn_bwd_time + norm_bwd_time + mlp_bwd_time
fwd_time = embed_fwd_time + NUM_BLOCKS * block_fwd_time + norm_fwd_time + head_fwd_time + loss_fwd_time
bwd_time = embed_bwd_time + NUM_BLOCKS * block_bwd_time + norm_bwd_time + head_bwd_time + loss_bwd_time
logger.info('ViT forward time: {:.3f} s | backward time: {:.3f} s'.format(
fwd_time, bwd_time),
ranks=[0])
def _test_main():
# init dist
init_dist(CONFIG)
logger = get_global_dist_logger()
logger.info('Distributed environment is initialzied.', ranks=[0])
global_context.set_seed()
torch.backends.cudnn.benchmark = True
# check operation
check_operations()
# check layers
check_layer()
if __name__ == '__main__':
_test_main()

View File

@@ -0,0 +1,19 @@
import torch
import torch.distributed as dist
from colossalai.initialize import parse_args
from colossalai.utils import get_current_device
ARGS = parse_args()
size = ARGS.world_size
rank = ARGS.local_rank
init_method = f'tcp://{ARGS.host}:{ARGS.port}'
dist.init_process_group(backend='nccl', rank=rank, world_size=size, init_method=init_method)
print('Rank {} / {}'.format(dist.get_rank(), dist.get_world_size()))
SIZE = 8
tensor = torch.randn(SIZE)
tensor = tensor.to(get_current_device())
dist.all_reduce(tensor)
print('Rank {0}: {1}'.format(rank, tensor.detach().cpu().numpy().tolist()))

View File

@@ -0,0 +1,640 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import time
import numpy as np
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context
from colossalai.logging import get_global_dist_logger
from colossalai.registry import LAYERS, LOSSES
from colossalai.utils import get_current_device, print_rank_0
from common import *
def check_linear():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
OUTPUT_SIZE = 2 * HIDDEN_SIZE
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
layer = LAYERS.get_module('Linear3D')(INPUT_SIZE,
OUTPUT_SIZE,
ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
dtype=dtype,
bias=True)
torch.nn.init.zeros_(layer.bias)
torch.nn.init.ones_(layer.weight)
layer = layer.to(device)
layer_master = torch.nn.Linear(INPUT_SIZE, OUTPUT_SIZE)
torch.nn.init.zeros_(layer_master.bias)
torch.nn.init.ones_(layer_master.weight)
layer_master = layer_master.to(device)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
fwd_start = time.time()
out = layer(A)
fwd_end = time.time()
print_rank_0(
'linear forward: {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer_master(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
logger.info('Rank {} linear forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=0)[k]
bwd_start = time.time()
out.backward(grad)
bwd_end = time.time()
print_rank_0('linear backward: {:.3f} s'.format(bwd_end - bwd_start),
logger)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} linear backward (input_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
B_grad = layer_master.weight.grad.transpose(0, 1)
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
logger.info('Rank {} linear backward (weight_grad): {}'.format(
rank, check_equal(B_grad, layer.weight.grad)))
if j == k:
bias_grad = layer_master.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
logger.info('Rank {} linear backward (bias_grad): {}'.format(
rank, check_equal(bias_grad, layer.bias.grad)))
else:
logger.info('Rank {} linear backward (bias_grad): {}'.format(
rank,
# np.count_nonzero(layer.bias.grad.detach().cpu().numpy()) == 0))
layer.bias.grad is None))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_layernorm():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
norm = LAYERS.get_module('LayerNorm3D')(INPUT_SIZE,
ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
eps=1e-6,
dtype=dtype)
norm = norm.to(device)
norm_master = torch.nn.LayerNorm(INPUT_SIZE, eps=1e-6)
norm_master = norm_master.to(device)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
fwd_start = time.time()
out = norm(A)
fwd_end = time.time()
print_rank_0(
'layer norm forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = norm_master(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} layernorm forward: {}'.format(rank,
check_equal(out, C)))
# time.sleep(rank)
# logger.info('Rank {0} master:\n{1}\nRank {0} out:\n{2}\nRank {0} true:\n{3}\n'.
# format(rank,
# C_master.detach().cpu().numpy().tolist(),
# out.detach().cpu().numpy().tolist(),
# C.detach().cpu().numpy().tolist()))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
bwd_start = time.time()
out.backward(grad)
bwd_end = time.time()
print_rank_0(
'layer norm backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} layernorm backward (input_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
if j == k:
bias_grad = norm_master.weight.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
logger.info('Rank {} linear backward (weight_grad): {}'.format(
rank, check_equal(bias_grad, norm.weight.grad)))
else:
logger.info('Rank {} linear backward (weight_grad): {}'.format(
rank,
# np.count_nonzero(layer.bias.grad.detach().cpu().numpy()) == 0))
norm.weight.grad is None))
if j == k:
bias_grad = norm_master.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
logger.info('Rank {} linear backward (bias_grad): {}'.format(
rank, check_equal(bias_grad, norm.bias.grad)))
else:
logger.info('Rank {} linear backward (bias_grad): {}'.format(
rank,
# np.count_nonzero(layer.bias.grad.detach().cpu().numpy()) == 0))
norm.bias.grad is None))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_attention():
rank = torch.distributed.get_rank()
device = get_current_device()
logger = get_global_dist_logger()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
NUM_ATTENTION_HEADS = 2
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
layer = LAYERS.get_module('ViTSelfAttention3D')(HIDDEN_SIZE,
NUM_ATTENTION_HEADS,
0.,
0.1,
dtype=dtype,
bias=True)
layer = layer.to(device)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
mask_shape = (BATCH_SIZE // DEPTH, NUM_ATTENTION_HEADS // DEPTH,
SEQ_LENGTH // DEPTH, SEQ_LENGTH // DEPTH)
attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
fwd_start = time.time()
out = layer(A)
fwd_end = time.time()
print_rank_0(
'self attention forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
bwd_start = time.time()
out.backward(grad)
bwd_end = time.time()
print_rank_0(
'self attention backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
return fwd_end - fwd_start, bwd_end - bwd_start
def check_mlp():
rank = torch.distributed.get_rank()
device = get_current_device()
logger = get_global_dist_logger()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
layer = LAYERS.get_module('ViTMLP3D')(HIDDEN_SIZE,
1,
0.1,
'gelu',
dtype=dtype,
bias=True)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
fwd_start = time.time()
out = layer(A)
fwd_end = time.time()
print_rank_0(
'mlp forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
bwd_start = time.time()
out.backward(grad)
bwd_end = time.time()
print_rank_0('mlp backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
return fwd_end - fwd_start, bwd_end - bwd_start
class Testvithead(torch.nn.Module):
def __init__(self, in_features, out_features, bias=True):
super().__init__()
self.linear = torch.nn.Linear(in_features, out_features, bias=bias)
def forward(self, x):
x = x[:, 0]
x = self.linear(x)
return x
def check_head():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
head = LAYERS.get_module('ViTHead3D')(INPUT_SIZE,
NUM_CLASSES,
dtype=dtype,
bias=True)
torch.nn.init.zeros_(head.linear.bias)
torch.nn.init.ones_(head.linear.weight)
head = head.to(device)
layer = Testvithead(INPUT_SIZE, NUM_CLASSES, bias=True)
torch.nn.init.zeros_(layer.linear.bias)
torch.nn.init.ones_(layer.linear.weight)
layer = layer.to(device)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
fwd_start = time.time()
out = head(A)
fwd_end = time.time()
print_rank_0(
'head forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
logger.info('Rank {} head forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=0)[k]
bwd_start = time.time()
out.backward(grad)
bwd_end = time.time()
print_rank_0('head backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
# if j == 0:
logger.info('Rank {} head backward (input_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
# else:
# logger.info('Rank {} head backward (input_grad): {}'.format(
# # rank, check_equal(A_grad, A.grad)))
# rank,
# A.grad is None))
B_grad = layer.linear.weight.grad.transpose(0, 1)
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
pad_shape = (B_grad.shape[0], math.ceil(B_grad.shape[-1] / DEPTH) * DEPTH -
B_grad.shape[-1])
B_grad = torch.cat(
[B_grad, torch.zeros(pad_shape, dtype=dtype, device=device)], dim=-1)
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
logger.info('Rank {} head backward (weight_grad): {}'.format(
rank, check_equal(B_grad, head.linear.weight.grad)))
if j == k:
bias_grad = layer.linear.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
pad_shape = (math.ceil(bias_grad.shape[0] / DEPTH) * DEPTH -
bias_grad.shape[0], )
bias_grad = torch.cat(
[bias_grad,
torch.zeros(pad_shape, dtype=dtype, device=device)])
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
logger.info('Rank {} head backward (bias_grad): {}'.format(
rank, check_equal(bias_grad, head.linear.bias.grad)))
else:
logger.info('Rank {} head backward (bias_grad): {}'.format(
rank,
# np.count_nonzero(
# head.linear.bias.grad.detach().cpu().numpy()) == 0))
head.linear.bias.grad is None))
return fwd_end - fwd_start, bwd_end - bwd_start
class Testvitembed(torch.nn.Module):
def __init__(self, img_size: int, patch_size: int, in_chans: int,
embed_size: int, drop_prob: float) -> None:
super().__init__()
self.proj = torch.nn.Conv2d(in_chans,
embed_size,
kernel_size=patch_size,
stride=patch_size)
num_patches = (img_size // patch_size)**2
self.cls_token = torch.nn.Parameter(torch.zeros(1, 1, embed_size))
self.pos_embed = torch.nn.Parameter(
torch.zeros(1, num_patches + 1, embed_size))
self.pos_drop = torch.nn.Dropout(drop_prob)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2).transpose(1, 2)
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_token, x), dim=1)
x = self.pos_drop(x + self.pos_embed)
return x
def check_embed():
rank = torch.distributed.get_rank()
device = get_current_device()
logger = get_global_dist_logger()
dtype = torch.float32
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
layer = LAYERS.get_module('ViTPatchEmbedding3D')(IMG_SIZE, 4, 3,
HIDDEN_SIZE, 0.)
torch.nn.init.zeros_(layer.proj.bias)
torch.nn.init.ones_(layer.proj.weight)
torch.nn.init.ones_(layer.cls_token)
torch.nn.init.ones_(layer.pos_embed)
layer = layer.to(device)
layer_master = Testvitembed(IMG_SIZE, 4, 3, HIDDEN_SIZE, 0.)
torch.nn.init.zeros_(layer_master.proj.bias)
torch.nn.init.ones_(layer_master.proj.weight)
torch.nn.init.ones_(layer_master.cls_token)
torch.nn.init.ones_(layer_master.pos_embed)
layer_master = layer_master.to(device)
A_shape = (BATCH_SIZE, 3, IMG_SIZE, IMG_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
A.requires_grad = True
fwd_start = time.time()
out = layer(A)
fwd_end = time.time()
print_rank_0(
'embedding forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
# out_cls = out[:, 0]
# out_tensor = out[:, 1:]
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer_master(A_master)
# if j == 0:
# C_cls = C_master[:, 0]
# C_cls = torch.chunk(C_cls, DEPTH, dim=0)[i]
# C_cls = torch.chunk(C_cls, DEPTH, dim=-1)[k]
# logger.info('Rank {} embed forward (cls): {}'.format(
# rank, check_equal(out_cls, C_cls)))
# C = C_master[:, 1:]
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} embed forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
# cls_grad = grad_master[:, 0]
# cls_grad = torch.chunk(cls_grad, DEPTH, dim=0)[i]
# cls_grad = torch.chunk(cls_grad, DEPTH, dim=-1)[k]
# grad = grad_master[:, 1:]
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
# grad = torch.cat((torch.unsqueeze(cls_grad, 1), grad), dim=1)
bwd_start = time.time()
out.backward(grad)
bwd_end = time.time()
print_rank_0(
'embedding backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
C_master.backward(grad_master)
# A_grad = A_master.grad
# logger.info('Rank {} embed backward (input_grad): {}'.format(
# rank, check_equal(A_grad, A.grad)))
# time.sleep(0.1 * rank)
# logger.info(
# 'Rank {0} master:\n{1}\nRank {0} out:\n{2}\nRank {0} true:\n{3}\n'.
# format(rank,
# A_master.grad.detach().cpu().numpy().tolist(),
# A.grad.detach().cpu().numpy().tolist(),
# A_grad.detach().cpu().numpy().tolist()), ranks=[0])
cls_grad_master = layer_master.cls_token.grad
cls_grad = torch.chunk(cls_grad_master, DEPTH, dim=-1)[k]
# if j == 0:
logger.info('Rank {} embed backward (cls_grad): {}'.format(
rank, check_equal(cls_grad, layer.cls_token.grad)))
# else:.
# logger.info('Rank {} embed backward (cls_grad): {}'.format(
# rank,
# layer.cls_token.grad is None or np.count_nonzero(
# layer.cls_token.grad.detach().cpu().numpy()) == 0))
pos_grad_master = layer_master.pos_embed.grad
pos_grad = torch.chunk(pos_grad_master, DEPTH, dim=-1)[k]
logger.info('Rank {} embed backward (pos_embed_grad): {}'.format(
rank, check_equal(pos_grad, layer.pos_embed.grad)))
# if i == 0:
# pos_cls_grad = pos_grad[:, 0]
# pos_tensor_grad = pos_grad[:, 1:]
# pos_tensor_grad = torch.chunk(pos_tensor_grad, DEPTH, dim=1)[j]
# if j == 0:
# logger.info('Rank {} embed backward (pos_embed_grad): {}'.format(
# rank,
# check_equal(
# torch.cat(
# (torch.unsqueeze(pos_cls_grad, 1), pos_tensor_grad),
# dim=1), layer.pos_embed.grad)))
# else:
# logger.info('Rank {} embed backward (pos_embed_grad): {}'.format(
# rank, check_equal(pos_tensor_grad, layer.pos_embed.grad[:,
# 1:])))
# else:
# logger.info('Rank {} embed backward (pos_embed_grad): {}'.format(
# rank, layer.pos_embed.grad is None))
B_grad = layer_master.proj.weight.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
logger.info('Rank {} embed backward (proj_weight_grad): {}'.format(
rank, check_equal(B_grad, layer.proj.weight.grad)))
bias_grad = layer_master.proj.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[k]
logger.info('Rank {} embed backward (proj_bias_grad): {}'.format(
rank, check_equal(bias_grad, layer.proj.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_loss():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
device = get_current_device()
dtype = torch.float32
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
criterion = LOSSES.get_module('CrossEntropyLoss3D')(
ParallelMode.PARALLEL_3D_INPUT, ParallelMode.PARALLEL_3D_WEIGHT)
criterion_master = torch.nn.CrossEntropyLoss()
out_shape = (BATCH_SIZE, NUM_CLASSES)
out_master = torch.randn(out_shape, dtype=dtype, device=device)
target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ),
dtype=torch.long,
device=device)
torch.distributed.broadcast(out_master, src=0)
torch.distributed.broadcast(target_master, src=0)
out = torch.chunk(out_master, DEPTH, dim=0)[i]
out = torch.chunk(out, DEPTH, dim=-1)[k]
out = torch.chunk(out, DEPTH, dim=0)[j]
out = out.clone()
out.requires_grad = True
fwd_start = time.time()
loss = criterion(out, target_master)
fwd_end = time.time()
print_rank_0(
'loss forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(out.shape), tuple(loss.shape), fwd_end - fwd_start), logger)
out_master = out_master.clone()
out_master.requires_grad = True
loss_master = criterion_master(out_master, target_master)
logger.info('Rank {} CrossEntropyLoss forward: {}'.format(
rank, check_equal(loss, loss_master)))
bwd_start = time.time()
loss.backward()
bwd_end = time.time()
print_rank_0('loss backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
loss_master.backward()
out_grad = out_master.grad
out_grad = torch.chunk(out_grad, DEPTH, dim=0)[i]
out_grad = torch.chunk(out_grad, DEPTH, dim=-1)[k]
out_grad = torch.chunk(out_grad, DEPTH, dim=0)[j]
logger.info('Rank {} CrossEntropyLoss backward: {}'.format(
rank, check_equal(out_grad, out.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start

View File

@@ -0,0 +1,465 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from colossalai.context import ParallelMode
from colossalai.core import global_context
from colossalai.logging import get_global_dist_logger
from colossalai.nn.layer.parallel_3d._operation import *
from colossalai.utils import get_current_device
from common import *
def check_AB():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
B_master = torch.randn(B_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(B_master, src=0)
B = torch.chunk(B_master, DEPTH, dim=0)[k]
B = torch.chunk(B, DEPTH, dim=-1)[j]
B = torch.chunk(B, DEPTH, dim=-1)[i]
B = B.clone()
B.requires_grad = True
out = Matmul_AB_3D.apply(A, B, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_OUTPUT)
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
A_master = A_master.clone()
A_master.requires_grad = True
B_master = B_master.clone()
B_master.requires_grad = True
C_master = torch.matmul(A_master, B_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
# check forward correctness
logger.info('Rank {} AB forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=0)[k]
out.backward(grad)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
# check backward correctness
logger.info('Rank {} AB backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
B_grad = B_master.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
# check backward correctness
logger.info('Rank {} AB backward (B_grad): {}'.format(
rank, check_equal(B_grad, B.grad)))
def check_ABT():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
C_master = torch.randn(C_shape, dtype=dtype, device=device)
torch.distributed.broadcast(C_master, src=0)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
C = C.clone()
C.requires_grad = True
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
B_master = torch.randn(B_shape, dtype=dtype, device=device)
torch.distributed.broadcast(B_master, src=0)
B = torch.chunk(B_master, DEPTH, dim=0)[k]
B = torch.chunk(B, DEPTH, dim=-1)[j]
B = torch.chunk(B, DEPTH, dim=-1)[i]
B = B.clone()
B.requires_grad = True
out = Matmul_ABT_3D.apply(C, B, DEPTH, ParallelMode.PARALLEL_3D_OUTPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_INPUT)
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
C_master = C_master.clone()
C_master.requires_grad = True
B_master = B_master.clone()
B_master.requires_grad = True
A_master = torch.matmul(C_master, B_master.transpose(0, 1))
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
logger.info('Rank {} ABT forward: {}'.format(rank, check_equal(out, A)))
grad_shape = A_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
# backward
out.backward(grad)
A_master.backward(grad_master)
C_grad = C_master.grad
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[i]
C_grad = torch.chunk(C_grad, DEPTH, dim=-1)[j]
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[k]
logger.info('Rank {} ABT backward (A_grad): {}'.format(
rank, check_equal(C_grad, C.grad)))
B_grad = B_master.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
logger.info('Rank {} ABT backward (B_grad): {}'.format(
rank, check_equal(B_grad, B.grad)))
def check_ATB():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
device = get_current_device()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
C_master = torch.randn(C_shape, dtype=dtype, device=device)
torch.distributed.broadcast(C_master, src=0)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
C = C.clone()
C.requires_grad = True
out = Matmul_ATB_3D.apply(A, C, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_OUTPUT,
ParallelMode.PARALLEL_3D_WEIGHT)
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = C_master.clone()
C_master.requires_grad = True
B_master = torch.matmul(
A_master.view(-1, A_master.shape[-1]).transpose(0, 1),
C_master.view(-1, C_master.shape[-1]))
B = torch.chunk(B_master, DEPTH, dim=0)[k]
B = torch.chunk(B, DEPTH, dim=-1)[j]
B = torch.chunk(B, DEPTH, dim=-1)[i]
logger.info('Rank {} ATB forward: {}'.format(rank, check_equal(out, B)))
grad_shape = B_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[k]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=-1)[i]
out.backward(grad)
B_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} ATB backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
C_grad = C_master.grad
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[i]
C_grad = torch.chunk(C_grad, DEPTH, dim=-1)[j]
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[k]
logger.info('Rank {} ATB backward (B_grad): {}'.format(
rank, check_equal(C_grad, C.grad)))
def check_add():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
bias_shape = (HIDDEN_SIZE, )
bias_master = torch.randn(bias_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[j]
bias = torch.chunk(bias, DEPTH)[i]
bias = bias.clone()
bias.requires_grad = True
out = Add_3D.apply(A, bias, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_OUTPUT)
A_master = A_master.clone()
A_master.requires_grad = True
bias_master = bias_master.clone()
bias_master.requires_grad = True
C_master = A_master + bias_master
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} Add forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
out.backward(grad)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} Add backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
if j == k:
bias_grad = bias_master.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
logger.info('Rank {} Add backward (b_grad): {}'.format(
rank, check_equal(bias_grad, bias.grad)))
else:
logger.info('Rank {} Add backward (b_grad): {}'.format(
rank,
# np.count_nonzero(bias.grad.detach().cpu().numpy()) == 0))
bias.grad is None))
def check_mul():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
bias_shape = (HIDDEN_SIZE, )
bias_master = torch.randn(bias_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[j]
bias = torch.chunk(bias, DEPTH)[i]
bias = bias.clone()
bias.requires_grad = True
out = Mul_3D.apply(A, bias, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_OUTPUT)
A_master = A_master.clone()
A_master.requires_grad = True
bias_master = bias_master.clone()
bias_master.requires_grad = True
C_master = torch.mul(A_master, bias_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} Mul forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
out.backward(grad)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} Mul backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
if j == k:
bias_grad = bias_master.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
logger.info('Rank {} Mul backward (b_grad): {}'.format(
rank, check_equal(bias_grad, bias.grad)))
else:
logger.info('Rank {} Mul backward (b_grad): {}'.format(
rank,
# np.count_nonzero(bias.grad.detach().cpu().numpy()) == 0))
bias.grad is None))
def check_sum():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
# tensor
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
out_tensor = Sum_3D.apply(A, -1, DEPTH, ParallelMode.PARALLEL_3D_OUTPUT)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = torch.sum(A_master, dim=-1)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} Sum forward: {}'.format(rank,
check_equal(out_tensor, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
out_tensor.backward(grad / DEPTH)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} Sum backward: {}'.format(rank,
check_equal(A_grad, A.grad)))
def check_reduce():
rank = torch.distributed.get_rank()
logger = get_global_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
# scaler
B_shape = (DEPTH * DEPTH, DEPTH)
B_master = torch.randn(B_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(B_master, src=0)
B = torch.chunk(B_master, DEPTH, dim=0)[i]
B = torch.chunk(B, DEPTH, dim=-1)[k]
B = torch.chunk(B, DEPTH, dim=0)[j]
B = torch.squeeze(B)
B = B.clone()
B.requires_grad = True
out_scaler = Reduce_3D.apply(B, 0, DEPTH, ParallelMode.PARALLEL_3D_OUTPUT)
out_scaler = Reduce_3D.apply(out_scaler, 0, DEPTH,
ParallelMode.PARALLEL_3D_INPUT)
out_scaler = Reduce_3D.apply(out_scaler, 0, DEPTH,
ParallelMode.PARALLEL_3D_WEIGHT)
B_master = B_master.clone()
B_master.requires_grad = True
D = torch.sum(B_master)
logger.info('Rank {} Reduce forward: {}'.format(rank,
check_equal(out_scaler,
D)))
grad_shape = D.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
out_scaler.backward(grad_master)
D.backward(grad_master)
B_grad = B_master.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
B_grad = torch.squeeze(B_grad)
logger.info('Rank {} Reduce backward: {}'.format(
rank, check_equal(B_grad, B.grad)))