[MoE/ZeRO] Moe refactor with zero refactor (#5821)

* [moe] removed openmoe-coupled code and rectify mixstral code (#5471)

* [Feauture] MoE refractor; Intergration with Mixtral  (#5682)

* cherry pick from refractor-moe branch

* tests passed

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support ep + zero

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* add mixtral auto policy & move pipeline forward code to modeling folder

* [moe refactor] modify kernel test without Route Class

* [moe refactor] add moe tensor test path environment variable to github workflow

* fix typos

* fix moe test bug due to the code rebase

* [moe refactor] fix moe zero test, and little bug in low level zero

* fix typo

* add moe tensor path to github workflow

* remove some useless code

* fix typo & unify global variable XX_AXIS logic without using -1

* fix typo & prettifier the code

* remove print code & support zero 2 test

* remove useless code

* reanme function

* fix typo

* fix typo

* Further improve the test code

* remove print code

* [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test

* [moe refactor] skip some unit test which will be refactored later

* [moe refactor] fix unit import error

* [moe refactor] fix circular import issues

* [moe refactor] remove debug code

* [moe refactor] update github workflow

* [moe/zero] refactor low level optimizer (#5767)

* [zero] refactor low level optimizer

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [Feature] MoE refactor with newest version of ZeRO (#5801)

* [zero] remove redundant members in BucketStore (#5802)

* [zero] align api with previous version

* [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819)

* [moe refactor] update unit test with the refactored ZeRO and remove useless test

* move moe checkpoint to checkpoint folder and exchange global axis to class member

* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug

* fix zero unit test

* Add an assertion to prevent users from using it incorrectly

* [hotfix]Solve the compatibility issue of zero refactor (#5823)

* [moe refactor] update unit test with the refactored ZeRO and remove useless test

* move moe checkpoint to checkpoint folder and exchange global axis to class member

* update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug

* fix zero unit test

* Add an assertion to prevent users from using it incorrectly

* Modify function parameter names to resolve compatibility issues

* [zero] fix missing hook removal (#5824)

* [MoE] Resolve .github conflict (#5829)

* [Fix/Example] Fix Llama Inference Loading Data Type (#5763)

* [fix/example] fix llama inference loading dtype

* revise loading dtype of benchmark llama3

* [release] update version (#5752)

* [release] update version

* [devops] update compatibility test

* [devops] update compatibility test

* [devops] update compatibility test

* [devops] update compatibility test

* [test] fix ddp plugin test

* [test] fix gptj and rpc test

* [devops] fix cuda ext compatibility

* [inference] fix flash decoding test

* [inference] fix flash decoding test

* fix (#5765)

* [test] Fix/fix testcase (#5770)

* [fix] branch for fix testcase;

* [fix] fix test_analyzer & test_auto_parallel;

* [fix] remove local change about moe;

* [fix] rm local change moe;

* [Hotfix] Add missing init file in inference.executor (#5774)

* [CI/tests] simplify some test case to reduce testing time (#5755)

* [ci/tests] simplify some test case to reduce testing time

* [ci/tests] continue to remove test case to reduce ci time cost

* restore some test config

* [ci/tests] continue to reduce ci time cost

* [misc] update dockerfile (#5776)

* [misc] update dockerfile

* [misc] update dockerfile

* [devops] fix docker ci (#5780)

* [Inference]Add Streaming LLM (#5745)

* Add Streaming LLM

* add some parameters to llama_generation.py

* verify streamingllm config

* add test_streamingllm.py

* modified according to the opinions of review

* add Citation

* change _block_tables tolist

* [hotfix] fix llama flash attention forward (#5777)

* [misc] Accelerate CI for zero and dist optim (#5758)

* remove fp16 from lamb

* remove d2h copy in checking states

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

* [Test/CI] remove test cases to reduce CI duration (#5753)

* [test] smaller gpt2 test case

* [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py

* [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py

* [test] reduce test cases tests/test_zero/test_gemini/test_optim.py

* Revert "[test] smaller gpt2 test case"

Some tests might depend on the size of model (num of chunks)

This reverts commit df705a5210.

* [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py

* [CI] smaller test model for two mwo the two modifid cases

* [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there

* [hotfix] fix testcase in test_fx/test_tracer (#5779)

* [fix] branch for fix testcase;

* [fix] fix test_analyzer & test_auto_parallel;

* [fix] remove local change about moe;

* [fix] rm local change moe;

* [fix] fix test_deepfm_model & test_dlrf_model;

* [fix] fix test_hf_albert & test_hf_gpt;

* [gemini] optimize reduce scatter d2h copy (#5760)

* [gemini] optimize reduce scatter d2h copy

* [fix] fix missing reduce variable

* [refactor] remove legacy async reduce scatter code

* [gemini] missing sync

* Revert "[refactor] remove legacy async reduce scatter code"

This reverts commit 58ad76d466.

* [gemini] further optimize with async all reduce

* [fix] pass flag from manager to chunk

* Allow building cuda extension without a device. (#5535)

Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are.

* [misc] fix dist logger (#5782)

* [install]fix setup (#5786)

* fix

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>

* [misc] update requirements (#5787)

* [shardformer] fix import (#5788)

* upgrade colossal-chat support tp_group>1, add sp for sft

* upgrade ppo dpo rm script

* run pre-commit

* moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy

* fix training script

* fix ci

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix transformers version

* remove duplicated test

* fix datasets version

* remove models that require huggingface auth from ci

* remove local data path

* update ci

* remove baichuan from template test due to transformer version conflict

* merge

* Refactor modeling by adding attention backend

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Fix tests and naming

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Pass inference model shard configs for module init

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Clean up

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* replace the customized dataloader setup with the build-in one

* replace the customized dataloader setup with the build-in one

* Remove flash attention backend

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* fix readme

* Fix test import

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* update sft trainning script

* [Inference]refactor baichuan (#5791)

* refactor baichuan

* remove unused code and add TODO for lazyinit

* [test] fix chatglm test kit (#5793)

* [shardformer] fix modeling of bloom and falcon (#5796)

* [test] fix qwen2 pytest distLarge (#5797)

* [Inference] Fix flash-attn import and add model test (#5794)

* Fix torch int32 dtype

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Fix flash-attn import

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Add generalized model test

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Remove exposed path to model

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Add default value for use_flash_attn

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* Rename model test

Signed-off-by: char-1ee <xingjianli59@gmail.com>

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>

* [Gemini] Use async stream to prefetch and h2d data moving (#5781)

* use async stream to prefetch and h2d data moving

* Remove redundant code

* [gemini] quick fix on possible async operation (#5803)

* [gemini] quick fix on possible async operation

* [gemini] quick fix on possible async operation

* [shardformer] upgrade transformers to 4.39.3 (#5815)

* [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807)

* [shardformer] fix modeling of gpt2 and gptj

* [shardformer] fix whisper modeling

* [misc] update requirements

---------

Co-authored-by: ver217 <lhx0217@gmail.com>

* [shardformer]upgrade transformers for mistral (#5808)

* upgrade transformers for mistral

* fix

* fix

* [shardformer]upgrade transformers for llama (#5809)

* update transformers

fix

* fix

* fix

* [inference] upgrade transformers (#5810)

* update transformers

fix

* fix

* fix

* fix

* fix

* [gemini] update transformers for gemini (#5814)

---------

Co-authored-by: ver217 <lhx0217@gmail.com>

* Support 4d parallel + flash attention (#5789)

* support tp + sp + pp

* remove comments

---------

Co-authored-by: Edenzzzz <wtan45@wisc.edu>

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>

* [zero] fix hook bug

* [zero] add low level optimizer back (#5839)

* [zero] fix param & refactor

* [zero] add back original low level opt

* [zero] remove moe related

* [zero] pass zero tests

* [zero] refactor

* [chore] add del func back

* [zero] comments and naming (#5840)

* [zero] modify api (#5843)

* [zero] modify api

* [test] remove _grad_store access in tests

* [test] fix (#5857)

* [CI] skip openmoe CI check

* [CI] fox pre-commit

* [zero] remove redundant memebr init (#5862)

* [misc] remove useless code, modify the pg mesh implementation

* [misc] remove useless code, modify the pg mesh implementation

* [misc] use tempfile

* resolve conflict with main branch

* [misc] use tempfile in test_moe_checkpoint.py

* [misc] remove useless code, add assertion about sequence parallel, move logger into function

* [misc] remove useless code

---------

Signed-off-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: botbw <wang1570@e.ntu.edu.sg>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: flybird11111 <1829166702@qq.com>
Co-authored-by: duanjunwen <935724073@qq.com>
Co-authored-by: yuehuayingxueluo <867460659@qq.com>
Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com>
Co-authored-by: YeAnbang <anbangy2@outlook.com>
Co-authored-by: char-1ee <xingjianli59@gmail.com>
Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
This commit is contained in:
Haze188
2024-06-28 14:00:08 +08:00
committed by GitHub
parent 773d9f964a
commit 416580b314
69 changed files with 1780 additions and 3076 deletions

View File

@@ -1,4 +1,5 @@
import random
import warnings
from types import MethodType
from typing import Callable, Optional, OrderedDict, Tuple
@@ -20,19 +21,19 @@ from colossalai.booster.plugin.hybrid_parallel_plugin import (
get_param_info,
init_pipeline_optimizer,
)
from colossalai.checkpoint_io import MoECheckpointIO
from colossalai.cluster import ProcessGroupMesh
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.moe import MOE_MANAGER, MoECheckpointIO
from colossalai.logging import get_dist_logger
from colossalai.pipeline.schedule import OneForwardOneBackwardSchedule
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig
from colossalai.shardformer.policies.base_policy import Policy
from colossalai.tensor.moe_tensor.api import is_moe_tensor
from colossalai.zero.low_level import LowLevelZeroOptimizer
PP_AXIS, DP_AXIS, TP_AXIS = 0, 1, 2
class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
class MoeHybridParallelZeroOptimizer(LowLevelZeroOptimizer):
def __init__(
self,
optimizer: Optimizer,
@@ -67,8 +68,20 @@ class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
self.pp_pg = pp_process_group
if use_pipeline:
init_pipeline_optimizer(optimizer, model)
pg_param_list = {
dp_process_group: [],
moe_extra_dp_process_group: [],
}
for param in model.parameters():
if is_moe_tensor(param):
pg_param_list[moe_extra_dp_process_group].append(param)
else:
pg_param_list[dp_process_group].append(param)
super().__init__(
optimizer=optimizer,
pg_to_param_list=pg_param_list,
initial_scale=initial_scale,
min_scale=min_scale,
growth_factor=growth_factor,
@@ -83,9 +96,7 @@ class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
overlap_communication=overlap_communication,
partition_grad=partition_grad,
cpu_offload=cpu_offload,
dp_process_group=dp_process_group,
forced_dtype=forced_dtype,
moe_extra_dp_process_group=moe_extra_dp_process_group,
)
@@ -107,8 +118,8 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
>>> model, optimizer, criterion, train_dataloader, _ = booster.boost(model, optimizer, criterion, train_dataloader)
Args:
tp_size (int): The size of tensor parallelism. Tensor parallelism will not be used when tp_size is set to 1.
pp_size (int): The number of pipeline stages in pipeline parallelism. Pipeline parallelism will not be used when pp_size is set to 1.
tp_size (int): The size of tensor parallelism. Tensor parallelism will not be used when tp_size is set to 1.
precision (str, optional): Specifies the precision of parameters during training.
Auto-mixied precision will be used when this argument is set to 'fp16' or 'bf16', otherwise model is trained with 'fp32'.
Defaults to 'fp16'.
@@ -144,14 +155,15 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
cpu_offload (bool, optional): Whether to open cpu_offload when using ZeRO. Defaults to False.
communication_dtype (torch.dtype, optional): Communication dtype when using ZeRO. If not specified, the dtype of param will be used. Defaults to None.
overlap_communication (bool, optional): Whether to overlap communication and computation when using ZeRO. Defaults to True.
use_ep_inside (bool, Optional): Whether to use ep inside dp (intra-node) for moe params.
"""
def __init__(
self,
tp_size: int,
pp_size: int,
ep_size: int,
extra_dp_size: int = 1,
tp_size: int = 1,
sp_size: int = 1,
precision: str = "fp16",
zero_stage: int = 0,
enable_all_optimization: bool = False,
@@ -184,32 +196,22 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
custom_policy: Policy = None,
checkpoint_io: Optional[MoECheckpointIO] = None,
) -> None:
assert (
dist.get_world_size() % (tp_size * pp_size) == 0
), f"world size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}"
world_size = dist.get_world_size()
assert tp_size == 1, "Tensor parallel is not supported in MoE yet"
assert sp_size == 1 and enable_sequence_parallelism is False, "Sequence parallelism it not supported in MoE yet"
if enable_sequence_parallelism:
assert tp_size > 1, "Sequence parallelism must be enabled when using tensor parallelism"
assert (
dist.get_world_size() % (tp_size * pp_size) == 0
), f"world size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}"
world_size % (tp_size * pp_size) == 0
), f"world size {world_size} is not divisible by tp_size {tp_size} * pp_size {pp_size}"
assert (
dist.get_world_size() % (tp_size * pp_size * ep_size) == 0
), f"world size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size} * ep_size {ep_size}"
self.real_dp_size = dist.get_world_size() // (tp_size * pp_size * ep_size)
MOE_MANAGER.setup(
parallel="EP",
mode="fixed",
fixed_dp_size=self.real_dp_size,
fixed_ep_size=ep_size,
fixed_pp_size=pp_size,
use_ep_inside=use_ep_inside,
)
world_size % (tp_size * pp_size * ep_size) == 0
), f"world size {world_size} is not divisible by tp_size {tp_size} * pp_size {pp_size} * ep_size {ep_size}"
self.dp_size = world_size // (tp_size * pp_size)
self.tp_size = tp_size
self.pp_size = pp_size
self.dp_size = dist.get_world_size() // (tp_size * pp_size)
self.ep_size = ep_size
self.moe_info = MOE_MANAGER.get_info(0)[1]
self.sp_size = sp_size
self.precision = precision
self.zero_stage = zero_stage
self.cpu_offload = cpu_offload
@@ -219,43 +221,57 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
self.enable_jit_fused = enable_jit_fused
self.enable_sequence_parallelism = enable_sequence_parallelism
self.checkpoint_io = checkpoint_io
logger = get_dist_logger()
# NOTE: Two process meshes: global dp for non-moe param; dp + ep for moe param
# See https://hpc-ai.com/blog/enhanced-moe-parallelism-open-source-moe-model-training-can-be-9-times-more-efficient
# we change pg mesh to (pp, dp, tp) for better moe performance
self.pg_mesh = ProcessGroupMesh(self.pp_size, self.dp_size, self.tp_size)
assert (
self.ep_size <= self.dp_size
), f"Not enough devices({self.dp_size}) for expert parallelism size({self.ep_size})."
# sync moe in outer dp group, and sync other param in global dp group
if extra_dp_size > 1:
ep_size = self.dp_size // extra_dp_size
if use_ep_inside:
self.pg_mesh_moe = ProcessGroupMesh(self.pp_size, extra_dp_size, ep_size)
self.moe_extra_dp_group = self.pg_mesh_moe.get_group_along_axis(1)
if dist.get_rank() == 0:
print(f"Zero Parallel: pp {self.pp_size}, outer_dp {extra_dp_size}, inner_dp {ep_size}")
else:
self.pg_mesh_moe = ProcessGroupMesh(self.pp_size, ep_size, extra_dp_size)
self.moe_extra_dp_group = self.pg_mesh_moe.get_group_along_axis(2)
if dist.get_rank() == 0:
print(f"Zero Parallel: pp {self.pp_size}, outer_dp {ep_size}, inner_dp {extra_dp_size}")
self.moe_dp_size = self.dp_size // self.ep_size
self.use_ep_inside = use_ep_inside
if self.use_ep_inside:
logger.info(f"MoE Parallel use ep inside dp.", ranks=[0])
self.pp_axis, self.dp_axis, self.ep_axis, self.tp_axis = 0, 1, 2, 3
self.pg_mesh = ProcessGroupMesh(self.pp_size, self.moe_dp_size, ep_size, tp_size)
else:
self.moe_extra_dp_group = None
logger.info(f"MoE Parallel use ep outside dp.", ranks=[0])
warnings.warn("Using ep outside dp (cross-node) is strongly discouraged due to communication costs.")
self.pp_axis, self.dp_axis, self.ep_axis, self.tp_axis = 0, 2, 1, 3
self.pg_mesh = ProcessGroupMesh(self.pp_size, ep_size, self.moe_dp_size, tp_size)
self.moe_dp_group = self.pg_mesh.get_group_along_axis(self.dp_axis)
self.ep_group = self.pg_mesh.get_group_along_axis(self.ep_axis)
logger.info(f"Non-MoE Parameter Parallel: pp {self.pp_size}, dp {self.dp_size}, tp {tp_size}", ranks=[0])
logger.info(
f"MoE Parallel: pp {self.pp_size}, ep {ep_size}, moe dp {self.moe_dp_size}, tp {tp_size}", ranks=[0]
)
self.tp_group = self.pg_mesh.get_group_along_axis(
self.tp_axis
) # TODO: support custom tp size for mixtral lm head
self.global_dp_group = self.pg_mesh.get_group_along_axis((self.dp_axis, self.ep_axis))
self.pp_group = self.pg_mesh.get_group_along_axis(self.pp_axis)
# TODO: Currently moe only support partially sequence parallel
self.sp_group = self.pg_mesh.get_group_along_axis(self.tp_axis)
self.custom_policy = custom_policy
self.stage_manager = None
self.schedule = None
self.custom_policy = custom_policy
assert zero_stage in (0, 1, 2)
if self.pp_size > 1:
assert (
num_microbatches is not None or microbatch_size is not None
), "num_microbatches or microbatch_size must be specified when using pipeline parallelism"
assert self.zero_stage <= 1, "zero stage must be 0 or 1 when using pipeline parallelism"
self.stage_manager = PipelineStageManager(self.pg_mesh, PP_AXIS)
self.stage_manager = PipelineStageManager(self.pg_mesh, self.pp_axis)
self.schedule = OneForwardOneBackwardSchedule(
self.stage_manager, num_microbatches=num_microbatches, microbatch_size=microbatch_size
)
self.tp_group = self.pg_mesh.get_group_along_axis(TP_AXIS)
self.dp_group = self.pg_mesh.get_group_along_axis(DP_AXIS)
self.pp_group = self.pg_mesh.get_group_along_axis(PP_AXIS)
# TODO: Currently moe only support partially sequence parallel
self.sp_group = self.pg_mesh.get_group_along_axis(TP_AXIS)
self.shard_config = ShardConfig(
tensor_parallel_process_group=self.tp_group,
@@ -267,6 +283,7 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
enable_jit_fused=self.enable_jit_fused,
enable_sequence_parallelism=enable_sequence_parallelism,
enable_sequence_overlap=enable_sequence_overlap,
ep_group=self.ep_group,
)
self.amp_config = dict(
initial_scale=initial_scale,
@@ -323,7 +340,10 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
"""
_kwargs = kwargs.copy()
sampler = DistributedSampler(
dataset, num_replicas=self.pg_mesh.size(DP_AXIS), rank=self.pg_mesh.coordinate(DP_AXIS), shuffle=shuffle
dataset,
num_replicas=self.dp_size,
rank=dist.get_rank(self.global_dp_group),
shuffle=shuffle,
)
# Deterministic dataloader
@@ -346,9 +366,20 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
def get_checkpoint_io(self) -> MoECheckpointIO:
if self.checkpoint_io is None:
self.checkpoint_io = MoECheckpointIO(self.dp_group, self.pp_group, self.tp_group, self.zero_stage)
self.checkpoint_io = MoECheckpointIO(
self.global_dp_group, self.pp_group, self.tp_group, self.ep_group, self.moe_dp_group, self.zero_stage
)
else:
self.checkpoint_io = self.checkpoint_io(self.dp_group, self.pp_group, self.tp_group, self.zero_stage)
self.checkpoint_io = self.checkpoint_io(
self.global_dp_group,
self.pp_group,
self.tp_group,
ep_group=self.ep_group,
moe_dp_group=self.moe_dp_group,
zero_stage=self.zero_stage,
)
if hasattr(self.checkpoint_io, "moe_info"):
self.checkpoint_io.moe_info = self.moe_info
return self.checkpoint_io
def configure(
@@ -366,7 +397,7 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
module=model,
precision=self.precision,
shard_config=self.shard_config,
dp_group=self.dp_group,
dp_group=self.global_dp_group,
tp_group=self.tp_group,
sp_group=self.sp_group,
use_ddp=use_ddp,
@@ -392,15 +423,15 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
else:
assert self.dp_size > 1, "Please use Zero when data parallel size is greater than 1."
assert self.precision != "fp32", "Please set precision to 'fp16' or 'bf16' when using ZeRO."
optimizer = HybridParallelZeroOptimizer(
optimizer = MoeHybridParallelZeroOptimizer(
optimizer,
model,
use_pipeline=self.enable_pipeline_parallelism,
param_info=param_info,
dp_process_group=self.dp_group,
dp_process_group=self.global_dp_group,
tp_process_group=self.tp_group,
pp_process_group=self.pp_group,
moe_extra_dp_process_group=self.moe_extra_dp_group,
moe_extra_dp_process_group=self.moe_dp_group,
verbose=True,
clip_grad_norm=self.max_norm,
**self.zero_config,