mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-01 17:17:05 +00:00
[MoE/ZeRO] Moe refactor with zero refactor (#5821)
* [moe] removed openmoe-coupled code and rectify mixstral code (#5471) * [Feauture] MoE refractor; Intergration with Mixtral (#5682) * cherry pick from refractor-moe branch * tests passed * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support ep + zero --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * add mixtral auto policy & move pipeline forward code to modeling folder * [moe refactor] modify kernel test without Route Class * [moe refactor] add moe tensor test path environment variable to github workflow * fix typos * fix moe test bug due to the code rebase * [moe refactor] fix moe zero test, and little bug in low level zero * fix typo * add moe tensor path to github workflow * remove some useless code * fix typo & unify global variable XX_AXIS logic without using -1 * fix typo & prettifier the code * remove print code & support zero 2 test * remove useless code * reanme function * fix typo * fix typo * Further improve the test code * remove print code * [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test * [moe refactor] skip some unit test which will be refactored later * [moe refactor] fix unit import error * [moe refactor] fix circular import issues * [moe refactor] remove debug code * [moe refactor] update github workflow * [moe/zero] refactor low level optimizer (#5767) * [zero] refactor low level optimizer * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] MoE refactor with newest version of ZeRO (#5801) * [zero] remove redundant members in BucketStore (#5802) * [zero] align api with previous version * [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * [hotfix]Solve the compatibility issue of zero refactor (#5823) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * Modify function parameter names to resolve compatibility issues * [zero] fix missing hook removal (#5824) * [MoE] Resolve .github conflict (#5829) * [Fix/Example] Fix Llama Inference Loading Data Type (#5763) * [fix/example] fix llama inference loading dtype * revise loading dtype of benchmark llama3 * [release] update version (#5752) * [release] update version * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [test] fix ddp plugin test * [test] fix gptj and rpc test * [devops] fix cuda ext compatibility * [inference] fix flash decoding test * [inference] fix flash decoding test * fix (#5765) * [test] Fix/fix testcase (#5770) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [Hotfix] Add missing init file in inference.executor (#5774) * [CI/tests] simplify some test case to reduce testing time (#5755) * [ci/tests] simplify some test case to reduce testing time * [ci/tests] continue to remove test case to reduce ci time cost * restore some test config * [ci/tests] continue to reduce ci time cost * [misc] update dockerfile (#5776) * [misc] update dockerfile * [misc] update dockerfile * [devops] fix docker ci (#5780) * [Inference]Add Streaming LLM (#5745) * Add Streaming LLM * add some parameters to llama_generation.py * verify streamingllm config * add test_streamingllm.py * modified according to the opinions of review * add Citation * change _block_tables tolist * [hotfix] fix llama flash attention forward (#5777) * [misc] Accelerate CI for zero and dist optim (#5758) * remove fp16 from lamb * remove d2h copy in checking states --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Test/CI] remove test cases to reduce CI duration (#5753) * [test] smaller gpt2 test case * [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py * [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py * [test] reduce test cases tests/test_zero/test_gemini/test_optim.py * Revert "[test] smaller gpt2 test case" Some tests might depend on the size of model (num of chunks) This reverts commitdf705a5210
. * [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py * [CI] smaller test model for two mwo the two modifid cases * [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there * [hotfix] fix testcase in test_fx/test_tracer (#5779) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [fix] fix test_deepfm_model & test_dlrf_model; * [fix] fix test_hf_albert & test_hf_gpt; * [gemini] optimize reduce scatter d2h copy (#5760) * [gemini] optimize reduce scatter d2h copy * [fix] fix missing reduce variable * [refactor] remove legacy async reduce scatter code * [gemini] missing sync * Revert "[refactor] remove legacy async reduce scatter code" This reverts commit58ad76d466
. * [gemini] further optimize with async all reduce * [fix] pass flag from manager to chunk * Allow building cuda extension without a device. (#5535) Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are. * [misc] fix dist logger (#5782) * [install]fix setup (#5786) * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [misc] update requirements (#5787) * [shardformer] fix import (#5788) * upgrade colossal-chat support tp_group>1, add sp for sft * upgrade ppo dpo rm script * run pre-commit * moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy * fix training script * fix ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix transformers version * remove duplicated test * fix datasets version * remove models that require huggingface auth from ci * remove local data path * update ci * remove baichuan from template test due to transformer version conflict * merge * Refactor modeling by adding attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix tests and naming Signed-off-by: char-1ee <xingjianli59@gmail.com> * Pass inference model shard configs for module init Signed-off-by: char-1ee <xingjianli59@gmail.com> * Clean up Signed-off-by: char-1ee <xingjianli59@gmail.com> * replace the customized dataloader setup with the build-in one * replace the customized dataloader setup with the build-in one * Remove flash attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * fix readme * Fix test import Signed-off-by: char-1ee <xingjianli59@gmail.com> * update sft trainning script * [Inference]refactor baichuan (#5791) * refactor baichuan * remove unused code and add TODO for lazyinit * [test] fix chatglm test kit (#5793) * [shardformer] fix modeling of bloom and falcon (#5796) * [test] fix qwen2 pytest distLarge (#5797) * [Inference] Fix flash-attn import and add model test (#5794) * Fix torch int32 dtype Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix flash-attn import Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add generalized model test Signed-off-by: char-1ee <xingjianli59@gmail.com> * Remove exposed path to model Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add default value for use_flash_attn Signed-off-by: char-1ee <xingjianli59@gmail.com> * Rename model test Signed-off-by: char-1ee <xingjianli59@gmail.com> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> * [Gemini] Use async stream to prefetch and h2d data moving (#5781) * use async stream to prefetch and h2d data moving * Remove redundant code * [gemini] quick fix on possible async operation (#5803) * [gemini] quick fix on possible async operation * [gemini] quick fix on possible async operation * [shardformer] upgrade transformers to 4.39.3 (#5815) * [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807) * [shardformer] fix modeling of gpt2 and gptj * [shardformer] fix whisper modeling * [misc] update requirements --------- Co-authored-by: ver217 <lhx0217@gmail.com> * [shardformer]upgrade transformers for mistral (#5808) * upgrade transformers for mistral * fix * fix * [shardformer]upgrade transformers for llama (#5809) * update transformers fix * fix * fix * [inference] upgrade transformers (#5810) * update transformers fix * fix * fix * fix * fix * [gemini] update transformers for gemini (#5814) --------- Co-authored-by: ver217 <lhx0217@gmail.com> * Support 4d parallel + flash attention (#5789) * support tp + sp + pp * remove comments --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> * [zero] fix hook bug * [zero] add low level optimizer back (#5839) * [zero] fix param & refactor * [zero] add back original low level opt * [zero] remove moe related * [zero] pass zero tests * [zero] refactor * [chore] add del func back * [zero] comments and naming (#5840) * [zero] modify api (#5843) * [zero] modify api * [test] remove _grad_store access in tests * [test] fix (#5857) * [CI] skip openmoe CI check * [CI] fox pre-commit * [zero] remove redundant memebr init (#5862) * [misc] remove useless code, modify the pg mesh implementation * [misc] remove useless code, modify the pg mesh implementation * [misc] use tempfile * resolve conflict with main branch * [misc] use tempfile in test_moe_checkpoint.py * [misc] remove useless code, add assertion about sequence parallel, move logger into function * [misc] remove useless code --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
This commit is contained in:
@@ -176,7 +176,7 @@ def main():
|
||||
use_ep_inside = False
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
pp_size=1,
|
||||
extra_dp_size=args.extra_dp_size,
|
||||
ep_size=args.ep_size,
|
||||
use_ep_inside=use_ep_inside,
|
||||
**hybrid_dict,
|
||||
)
|
||||
|
@@ -50,9 +50,9 @@ try:
|
||||
except:
|
||||
HAS_FLASH_ATTN = False
|
||||
from colossalai.kernel.triton.llama_act_combine_kernel import HAS_TRITON
|
||||
from colossalai.moe.layers import SparseMLP
|
||||
from colossalai.moe.manager import MOE_MANAGER
|
||||
from colossalai.moe.utils import get_activation, set_moe_args
|
||||
from colossalai.shardformer.layer.moe import SparseMLP
|
||||
|
||||
if HAS_TRITON:
|
||||
from colossalai.kernel.triton.llama_act_combine_kernel import LlamaActCombine
|
||||
@@ -83,7 +83,7 @@ def set_openmoe_args(
|
||||
load_balance_group_swap_factor: float = 0.4,
|
||||
enable_kernel: bool = False,
|
||||
enable_comm_overlap: bool = False,
|
||||
enable_hierarchical_alltoall: bool = False,
|
||||
enable_hierarchical_alltoall: bool = True,
|
||||
) -> None:
|
||||
"""
|
||||
MoE related arguments.
|
||||
@@ -465,7 +465,7 @@ class OpenMoeDecoderLayer(nn.Module):
|
||||
load_balance_beam_width=config.load_balance_beam_width,
|
||||
load_balance_group_swap_factor=config.load_balance_group_swap_factor,
|
||||
enable_kernel=config.enable_kernel,
|
||||
enable_comm_overlap=config.enable_comm_overlap,
|
||||
enable_hierarchical_comm=config.enable_hierarchical_alltoall,
|
||||
)
|
||||
self.pre_extra_mlp_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.extra_mlp = OpenMoeMLP(config)
|
||||
@@ -903,7 +903,7 @@ class OpenMoeForCausalLM(OpenMoePreTrainedModel):
|
||||
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
||||
```"""
|
||||
# reset moe loss
|
||||
MOE_MANAGER.reset_loss()
|
||||
MOE_MANAGER.reset_loss() # TODO: remove
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
@@ -1027,7 +1027,7 @@ class OpenMoeForCausalLM(OpenMoePreTrainedModel):
|
||||
|
||||
def _calculate_router_loss(self, aux_loss: list = None, z_loss: list = None):
|
||||
if aux_loss is None or z_loss is None:
|
||||
aux_loss, z_loss = MOE_MANAGER.get_loss()
|
||||
aux_loss, z_loss = MOE_MANAGER.get_loss() # TODO: remove
|
||||
assert len(aux_loss) == len(z_loss) == self.config.num_hidden_layers // self.config.moe_layer_interval
|
||||
aux_loss = self.config.router_aux_loss_factor * sum(aux_loss) / len(aux_loss)
|
||||
z_loss = self.config.router_z_loss_factor * sum(z_loss) / len(z_loss)
|
||||
|
@@ -172,6 +172,7 @@ class OpenMoeForCausalLMPolicy(OpenMoePolicy):
|
||||
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
# add a new item for casual lm
|
||||
# TODO: recursively assign ep group foe all modules
|
||||
new_item = {
|
||||
OpenMoeForCausalLM: ModulePolicyDescription(
|
||||
sub_module_replacement=[
|
||||
|
@@ -1,37 +1,37 @@
|
||||
pip install -r requirements.txt
|
||||
# pip install -r requirements.txt
|
||||
|
||||
# inference
|
||||
python infer.py --model "test"
|
||||
# python infer.py --model "test"
|
||||
|
||||
# train
|
||||
torchrun --standalone --nproc_per_node 4 train.py \
|
||||
--num_epoch 1 \
|
||||
--model_name "test" \
|
||||
--plugin "ep" \
|
||||
--batch_size 1
|
||||
# torchrun --standalone --nproc_per_node 4 train.py \
|
||||
# --num_epoch 1 \
|
||||
# --model_name "test" \
|
||||
# --plugin "ep" \
|
||||
# --batch_size 1
|
||||
|
||||
torchrun --standalone --nproc_per_node 4 train.py \
|
||||
--num_epoch 1 \
|
||||
--model_name "test" \
|
||||
--plugin "ep_zero" \
|
||||
--batch_size 1 \
|
||||
--zero_stage 1 \
|
||||
--extra_dp_size 2 \
|
||||
# torchrun --standalone --nproc_per_node 4 train.py \
|
||||
# --num_epoch 1 \
|
||||
# --model_name "test" \
|
||||
# --plugin "ep_zero" \
|
||||
# --batch_size 1 \
|
||||
# --zero_stage 1 \
|
||||
# --extra_dp_size 2 \
|
||||
|
||||
torchrun --standalone --nproc_per_node 4 train.py \
|
||||
--num_epoch 1 \
|
||||
--model_name "test" \
|
||||
--plugin "ep_zero" \
|
||||
--batch_size 1 \
|
||||
--zero_stage 2 \
|
||||
--extra_dp_size 2 \
|
||||
# torchrun --standalone --nproc_per_node 4 train.py \
|
||||
# --num_epoch 1 \
|
||||
# --model_name "test" \
|
||||
# --plugin "ep_zero" \
|
||||
# --batch_size 1 \
|
||||
# --zero_stage 2 \
|
||||
# --extra_dp_size 2 \
|
||||
|
||||
torchrun --standalone --nproc_per_node 4 train.py \
|
||||
--model_name "test" \
|
||||
--plugin "hybrid" \
|
||||
--num_epoch 1 \
|
||||
--pp_size 2 \
|
||||
--dp_size 1 \
|
||||
--ep_size 2 \
|
||||
--zero_stage 1 \
|
||||
--batch_size 1
|
||||
# torchrun --standalone --nproc_per_node 4 train.py \
|
||||
# --model_name "test" \
|
||||
# --plugin "hybrid" \
|
||||
# --num_epoch 1 \
|
||||
# --pp_size 2 \
|
||||
# --dp_size 1 \
|
||||
# --ep_size 2 \
|
||||
# --zero_stage 1 \
|
||||
# --batch_size 1
|
||||
|
@@ -19,10 +19,9 @@ from colossalai.accelerator import get_accelerator
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||
from colossalai.cluster import DistCoordinator
|
||||
from colossalai.moe.layers import apply_load_balance
|
||||
from colossalai.moe.manager import MOE_MANAGER
|
||||
from colossalai.moe.utils import skip_init
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.shardformer.layer.moe import apply_load_balance
|
||||
|
||||
|
||||
def move_to_cuda(batch, device):
|
||||
@@ -221,48 +220,49 @@ def main():
|
||||
"precision": args.precision,
|
||||
"zero_stage": args.zero_stage,
|
||||
}
|
||||
mgr_dict = {}
|
||||
if args.plugin == "ep":
|
||||
dp_size = dist.get_world_size()
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
pp_size=1,
|
||||
ep_size=args.ep_size,
|
||||
**hybrid_dict,
|
||||
)
|
||||
MOE_MANAGER.setup(
|
||||
parallel="EP",
|
||||
max_ep_size=dp_size,
|
||||
**mgr_dict,
|
||||
)
|
||||
# MOE_MANAGER.setup(
|
||||
# parallel="EP",
|
||||
# max_ep_size=dp_size,
|
||||
# **mgr_dict,
|
||||
# )
|
||||
elif args.plugin == "ep_zero":
|
||||
dp_size = dist.get_world_size()
|
||||
use_ep_inside = False
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
pp_size=1,
|
||||
extra_dp_size=args.extra_dp_size,
|
||||
ep_size=dp_size // args.ep_size,
|
||||
use_ep_inside=use_ep_inside,
|
||||
**hybrid_dict,
|
||||
)
|
||||
MOE_MANAGER.setup(
|
||||
parallel="EP",
|
||||
max_ep_size=dp_size // args.extra_dp_size,
|
||||
use_ep_inside=use_ep_inside,
|
||||
**mgr_dict,
|
||||
)
|
||||
# MOE_MANAGER.setup(
|
||||
# parallel="EP",
|
||||
# max_ep_size=dp_size // args.extra_dp_size,
|
||||
# use_ep_inside=use_ep_inside,
|
||||
# **mgr_dict,
|
||||
# )
|
||||
elif args.plugin == "hybrid":
|
||||
dp_size = dist.get_world_size() // args.pp_size
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
pp_size=args.pp_size,
|
||||
ep_size=args.ep_size,
|
||||
microbatch_size=args.microbatch_size,
|
||||
**hybrid_dict,
|
||||
)
|
||||
MOE_MANAGER.setup(
|
||||
parallel="EP",
|
||||
mode="fixed",
|
||||
fixed_dp_size=args.dp_size,
|
||||
fixed_ep_size=args.ep_size,
|
||||
fixed_pp_size=args.pp_size,
|
||||
**mgr_dict,
|
||||
)
|
||||
# MOE_MANAGER.setup(
|
||||
# parallel="EP",
|
||||
# mode="fixed",
|
||||
# fixed_dp_size=args.dp_size,
|
||||
# fixed_ep_size=args.ep_size,
|
||||
# fixed_pp_size=args.pp_size,
|
||||
# **mgr_dict,
|
||||
# )
|
||||
else:
|
||||
raise ValueError(f"Invalid plugin {args.plugin}")
|
||||
coordinator.print_on_master(f"Set plugin as {plugin.__class__.__name__}")
|
||||
|
Reference in New Issue
Block a user