mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-02 17:46:42 +00:00
[MoE/ZeRO] Moe refactor with zero refactor (#5821)
* [moe] removed openmoe-coupled code and rectify mixstral code (#5471) * [Feauture] MoE refractor; Intergration with Mixtral (#5682) * cherry pick from refractor-moe branch * tests passed * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support ep + zero --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * add mixtral auto policy & move pipeline forward code to modeling folder * [moe refactor] modify kernel test without Route Class * [moe refactor] add moe tensor test path environment variable to github workflow * fix typos * fix moe test bug due to the code rebase * [moe refactor] fix moe zero test, and little bug in low level zero * fix typo * add moe tensor path to github workflow * remove some useless code * fix typo & unify global variable XX_AXIS logic without using -1 * fix typo & prettifier the code * remove print code & support zero 2 test * remove useless code * reanme function * fix typo * fix typo * Further improve the test code * remove print code * [moe refactor] change test model from fake moe model to mixtral moe layer and remove useless test * [moe refactor] skip some unit test which will be refactored later * [moe refactor] fix unit import error * [moe refactor] fix circular import issues * [moe refactor] remove debug code * [moe refactor] update github workflow * [moe/zero] refactor low level optimizer (#5767) * [zero] refactor low level optimizer * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] MoE refactor with newest version of ZeRO (#5801) * [zero] remove redundant members in BucketStore (#5802) * [zero] align api with previous version * [Moe/Zero] Update MoeHybridParallelPlugin with refactored ZeRO and Fix Zero bug (#5819) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * [hotfix]Solve the compatibility issue of zero refactor (#5823) * [moe refactor] update unit test with the refactored ZeRO and remove useless test * move moe checkpoint to checkpoint folder and exchange global axis to class member * update moe hybrid parallel plugin with newest version of zero & fix zero working/master params bug * fix zero unit test * Add an assertion to prevent users from using it incorrectly * Modify function parameter names to resolve compatibility issues * [zero] fix missing hook removal (#5824) * [MoE] Resolve .github conflict (#5829) * [Fix/Example] Fix Llama Inference Loading Data Type (#5763) * [fix/example] fix llama inference loading dtype * revise loading dtype of benchmark llama3 * [release] update version (#5752) * [release] update version * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [devops] update compatibility test * [test] fix ddp plugin test * [test] fix gptj and rpc test * [devops] fix cuda ext compatibility * [inference] fix flash decoding test * [inference] fix flash decoding test * fix (#5765) * [test] Fix/fix testcase (#5770) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [Hotfix] Add missing init file in inference.executor (#5774) * [CI/tests] simplify some test case to reduce testing time (#5755) * [ci/tests] simplify some test case to reduce testing time * [ci/tests] continue to remove test case to reduce ci time cost * restore some test config * [ci/tests] continue to reduce ci time cost * [misc] update dockerfile (#5776) * [misc] update dockerfile * [misc] update dockerfile * [devops] fix docker ci (#5780) * [Inference]Add Streaming LLM (#5745) * Add Streaming LLM * add some parameters to llama_generation.py * verify streamingllm config * add test_streamingllm.py * modified according to the opinions of review * add Citation * change _block_tables tolist * [hotfix] fix llama flash attention forward (#5777) * [misc] Accelerate CI for zero and dist optim (#5758) * remove fp16 from lamb * remove d2h copy in checking states --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [Test/CI] remove test cases to reduce CI duration (#5753) * [test] smaller gpt2 test case * [test] reduce test cases: tests/test_zero/test_gemini/test_zeroddp_state_dict.py * [test] reduce test cases: tests/test_zero/test_gemini/test_grad_accum.py * [test] reduce test cases tests/test_zero/test_gemini/test_optim.py * Revert "[test] smaller gpt2 test case" Some tests might depend on the size of model (num of chunks) This reverts commitdf705a5210
. * [test] reduce test cases: tests/test_checkpoint_io/test_gemini_checkpoint_io.py * [CI] smaller test model for two mwo the two modifid cases * [CI] hardcode gpt model for tests/test_zero/test_gemini/test_search.py since we need a fixed answer there * [hotfix] fix testcase in test_fx/test_tracer (#5779) * [fix] branch for fix testcase; * [fix] fix test_analyzer & test_auto_parallel; * [fix] remove local change about moe; * [fix] rm local change moe; * [fix] fix test_deepfm_model & test_dlrf_model; * [fix] fix test_hf_albert & test_hf_gpt; * [gemini] optimize reduce scatter d2h copy (#5760) * [gemini] optimize reduce scatter d2h copy * [fix] fix missing reduce variable * [refactor] remove legacy async reduce scatter code * [gemini] missing sync * Revert "[refactor] remove legacy async reduce scatter code" This reverts commit58ad76d466
. * [gemini] further optimize with async all reduce * [fix] pass flag from manager to chunk * Allow building cuda extension without a device. (#5535) Added FORCE_CUDA environment variable support, to enable building extensions where a GPU device is not present but cuda libraries are. * [misc] fix dist logger (#5782) * [install]fix setup (#5786) * fix * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [misc] update requirements (#5787) * [shardformer] fix import (#5788) * upgrade colossal-chat support tp_group>1, add sp for sft * upgrade ppo dpo rm script * run pre-commit * moupdate ci tests, st ci test cases passed, tp failed in generation for ppo, sp is buggy * fix training script * fix ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix transformers version * remove duplicated test * fix datasets version * remove models that require huggingface auth from ci * remove local data path * update ci * remove baichuan from template test due to transformer version conflict * merge * Refactor modeling by adding attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix tests and naming Signed-off-by: char-1ee <xingjianli59@gmail.com> * Pass inference model shard configs for module init Signed-off-by: char-1ee <xingjianli59@gmail.com> * Clean up Signed-off-by: char-1ee <xingjianli59@gmail.com> * replace the customized dataloader setup with the build-in one * replace the customized dataloader setup with the build-in one * Remove flash attention backend Signed-off-by: char-1ee <xingjianli59@gmail.com> * fix readme * Fix test import Signed-off-by: char-1ee <xingjianli59@gmail.com> * update sft trainning script * [Inference]refactor baichuan (#5791) * refactor baichuan * remove unused code and add TODO for lazyinit * [test] fix chatglm test kit (#5793) * [shardformer] fix modeling of bloom and falcon (#5796) * [test] fix qwen2 pytest distLarge (#5797) * [Inference] Fix flash-attn import and add model test (#5794) * Fix torch int32 dtype Signed-off-by: char-1ee <xingjianli59@gmail.com> * Fix flash-attn import Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add generalized model test Signed-off-by: char-1ee <xingjianli59@gmail.com> * Remove exposed path to model Signed-off-by: char-1ee <xingjianli59@gmail.com> * Add default value for use_flash_attn Signed-off-by: char-1ee <xingjianli59@gmail.com> * Rename model test Signed-off-by: char-1ee <xingjianli59@gmail.com> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> * [Gemini] Use async stream to prefetch and h2d data moving (#5781) * use async stream to prefetch and h2d data moving * Remove redundant code * [gemini] quick fix on possible async operation (#5803) * [gemini] quick fix on possible async operation * [gemini] quick fix on possible async operation * [shardformer] upgrade transformers to 4.39.3 (#5815) * [shardformer]upgrade transformers for gpt2/gptj/whisper (#5807) * [shardformer] fix modeling of gpt2 and gptj * [shardformer] fix whisper modeling * [misc] update requirements --------- Co-authored-by: ver217 <lhx0217@gmail.com> * [shardformer]upgrade transformers for mistral (#5808) * upgrade transformers for mistral * fix * fix * [shardformer]upgrade transformers for llama (#5809) * update transformers fix * fix * fix * [inference] upgrade transformers (#5810) * update transformers fix * fix * fix * fix * fix * [gemini] update transformers for gemini (#5814) --------- Co-authored-by: ver217 <lhx0217@gmail.com> * Support 4d parallel + flash attention (#5789) * support tp + sp + pp * remove comments --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com> * [zero] fix hook bug * [zero] add low level optimizer back (#5839) * [zero] fix param & refactor * [zero] add back original low level opt * [zero] remove moe related * [zero] pass zero tests * [zero] refactor * [chore] add del func back * [zero] comments and naming (#5840) * [zero] modify api (#5843) * [zero] modify api * [test] remove _grad_store access in tests * [test] fix (#5857) * [CI] skip openmoe CI check * [CI] fox pre-commit * [zero] remove redundant memebr init (#5862) * [misc] remove useless code, modify the pg mesh implementation * [misc] remove useless code, modify the pg mesh implementation * [misc] use tempfile * resolve conflict with main branch * [misc] use tempfile in test_moe_checkpoint.py * [misc] remove useless code, add assertion about sequence parallel, move logger into function * [misc] remove useless code --------- Signed-off-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu> Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: botbw <wang1570@e.ntu.edu.sg> Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com> Co-authored-by: flybird11111 <1829166702@qq.com> Co-authored-by: duanjunwen <935724073@qq.com> Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Charles Coulombe <ccoulombe@users.noreply.github.com> Co-authored-by: YeAnbang <anbangy2@outlook.com> Co-authored-by: char-1ee <xingjianli59@gmail.com> Co-authored-by: Runyu Lu <77330637+LRY89757@users.noreply.github.com> Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com> Co-authored-by: Guangyao Zhang <xjtu521@qq.com>
This commit is contained in:
@@ -1,201 +1,176 @@
|
||||
import importlib
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
import tempfile
|
||||
from contextlib import nullcontext
|
||||
from copy import deepcopy
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers.models.llama import LlamaConfig
|
||||
from torch.optim import Adam
|
||||
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
||||
from transformers.models.mixtral.modeling_mixtral import MixtralForCausalLM
|
||||
|
||||
import colossalai
|
||||
from colossalai.accelerator import get_accelerator
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||
from colossalai.testing import DummyDataloader, check_state_dict_equal, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.checkpoint_io import MoECheckpointIO
|
||||
from colossalai.tensor.moe_tensor.api import is_moe_tensor
|
||||
from colossalai.testing.utils import spawn
|
||||
|
||||
sys.path.append(
|
||||
os.path.join(
|
||||
os.path.dirname(os.path.dirname(os.path.dirname(__file__))),
|
||||
"examples/language/openmoe",
|
||||
)
|
||||
)
|
||||
|
||||
OpenMoeForCausalLM = importlib.import_module("model.modeling_openmoe").OpenMoeForCausalLM
|
||||
set_openmoe_args = importlib.import_module("model.modeling_openmoe").set_openmoe_args
|
||||
OpenMoeForCausalLMPolicy = importlib.import_module("model.openmoe_policy").OpenMoeForCausalLMPolicy
|
||||
tokens, n_experts = 7, 4
|
||||
hidden_size = 8
|
||||
top_k = 2
|
||||
|
||||
|
||||
def data_gen_fn(batch_size: int = 2, max_length: int = 4, vocab_size: int = 20):
|
||||
input_ids = torch.randint(0, vocab_size, (batch_size, max_length), device=get_accelerator().get_current_device())
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
def check_model_equal(model1, model2):
|
||||
assert set(model1.state_dict().keys()) == set(model2.state_dict().keys())
|
||||
for i, ((name, p1), p2) in enumerate(zip(model1.named_parameters(), model2.parameters())):
|
||||
if not torch.equal(p1.half(), p2.half()):
|
||||
print(f"Model parameter {name} is not equal. is_moe_tensor: {is_moe_tensor(p1)}")
|
||||
raise AssertionError(f"Model parameter {name} is not equal")
|
||||
|
||||
|
||||
def get_optimizer_snapshot(optim):
|
||||
state = {id(k): deepcopy(v) for k, v in optim.state.items()}
|
||||
param_groups = []
|
||||
for group in optim.param_groups:
|
||||
params = [id(p) for p in group["params"]]
|
||||
new_group = {"params": params}
|
||||
for k, v in group.items():
|
||||
if k != "params":
|
||||
new_group[k] = v
|
||||
param_groups.append(new_group)
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"labels": input_ids,
|
||||
"state": state,
|
||||
"param_groups": param_groups,
|
||||
}
|
||||
|
||||
|
||||
def run_fwd_bwd(
|
||||
model, data, label, criterion, optimizer, enable_autocast=False, pipeline=False, booster=None, plugin=None
|
||||
):
|
||||
model.train()
|
||||
if pipeline:
|
||||
train_dataloader_iter = DummyDataloader(data_gen_fn, length=1)
|
||||
is_pp_last_stage = booster.plugin.stage_manager.is_last_stage()
|
||||
y = booster.execute_pipeline(
|
||||
train_dataloader_iter,
|
||||
model,
|
||||
lambda x, y: x.loss,
|
||||
optimizer,
|
||||
return_loss=True,
|
||||
)
|
||||
# Backward and optimize
|
||||
if is_pp_last_stage:
|
||||
loss = y["loss"]
|
||||
else:
|
||||
if criterion:
|
||||
y = model(data).logits
|
||||
loss = criterion(y)
|
||||
def check_optimizer_snapshot_equal(snapshot1, snapshot2, param2name, moe_dp_group=None):
|
||||
assert len(snapshot1["param_groups"]) == len(snapshot2["param_groups"])
|
||||
for group1, group2 in zip(snapshot1["param_groups"], snapshot2["param_groups"]):
|
||||
assert set(group1.keys()) == set(group2.keys())
|
||||
for k in group1.keys():
|
||||
assert group1[k] == group2[k]
|
||||
# check state
|
||||
assert set(snapshot1["state"].keys()) == set(
|
||||
snapshot2["state"].keys()
|
||||
), f"{snapshot1['state'].keys()}, {snapshot2['state'].keys()}"
|
||||
|
||||
passed = True
|
||||
count = 0
|
||||
for pid in snapshot1["state"].keys():
|
||||
state1, state2 = snapshot1["state"][pid], snapshot2["state"][pid]
|
||||
assert set(state1.keys()) == set(state2.keys())
|
||||
bug = False
|
||||
for k in state1.keys():
|
||||
if isinstance(state1[k], torch.Tensor):
|
||||
if not torch.equal(state1[k], state2[k]):
|
||||
bug = True
|
||||
count += 1
|
||||
else:
|
||||
assert state1[k] == state2[k]
|
||||
if bug:
|
||||
passed = False
|
||||
|
||||
if not passed:
|
||||
raise AssertionError(f"A total of {count} optim states are not equal")
|
||||
|
||||
|
||||
def check_mixtral_moe_layer():
|
||||
context = tempfile.TemporaryDirectory() if dist.get_rank() == 0 else nullcontext()
|
||||
with context as f:
|
||||
torch.cuda.set_device(dist.get_rank())
|
||||
if dist.get_rank() == 0:
|
||||
broadcast_objects = [f] # any picklable object
|
||||
else:
|
||||
loss = model(data, label)
|
||||
loss = loss.float()
|
||||
broadcast_objects = [None]
|
||||
dist.broadcast_object_list(broadcast_objects, src=0)
|
||||
|
||||
if optimizer is not None:
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
return y
|
||||
|
||||
|
||||
def get_config():
|
||||
config = LlamaConfig(
|
||||
vocab_size=300,
|
||||
hidden_size=16,
|
||||
intermediate_size=32,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=2,
|
||||
head_dim=4,
|
||||
dropout_rate=0.0,
|
||||
hidden_act="swiglu",
|
||||
)
|
||||
set_openmoe_args(config, num_experts=8, moe_layer_interval=1)
|
||||
return config
|
||||
|
||||
|
||||
def get_model(parallel):
|
||||
config = get_config()
|
||||
model = OpenMoeForCausalLM(config)
|
||||
optim = torch.optim.Adam(model.parameters())
|
||||
|
||||
if parallel == None:
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
precision="bf16",
|
||||
tp_size=1,
|
||||
pp_size=1,
|
||||
ep_size=1,
|
||||
zero_stage=2,
|
||||
custom_policy=OpenMoeForCausalLMPolicy(),
|
||||
config = MixtralConfig(
|
||||
hidden_size=hidden_size,
|
||||
intermediate_size=hidden_size * 2,
|
||||
num_local_experts=n_experts,
|
||||
num_experts_per_tok=top_k,
|
||||
num_attention_heads=2,
|
||||
num_key_value_heads=2,
|
||||
)
|
||||
elif parallel == "ep":
|
||||
torch.manual_seed(0)
|
||||
input_ids = torch.randint(0, 100, (2, tokens)).cuda()
|
||||
orig_model = MixtralForCausalLM(config).cuda()
|
||||
model = deepcopy(orig_model)
|
||||
optimizer = Adam(model.parameters(), lr=1e-3)
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
precision="bf16",
|
||||
tp_size=1,
|
||||
pp_size=1,
|
||||
ep_size=dist.get_world_size(),
|
||||
zero_stage=2,
|
||||
custom_policy=OpenMoeForCausalLMPolicy(),
|
||||
)
|
||||
elif parallel == "ep_zero":
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
precision="bf16",
|
||||
tp_size=1,
|
||||
pp_size=1,
|
||||
ep_size=2,
|
||||
zero_stage=2,
|
||||
extra_dp_size=2,
|
||||
custom_policy=OpenMoeForCausalLMPolicy(),
|
||||
)
|
||||
elif parallel == "hybrid":
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
precision="bf16",
|
||||
tp_size=1,
|
||||
pp_size=2,
|
||||
ep_size=2,
|
||||
zero_stage=1,
|
||||
tp_size=1,
|
||||
checkpoint_io=MoECheckpointIO,
|
||||
microbatch_size=1,
|
||||
custom_policy=OpenMoeForCausalLMPolicy(),
|
||||
zero_stage=1,
|
||||
)
|
||||
booster = Booster(plugin=plugin)
|
||||
model, optim, _, _, _ = booster.boost(model=model, optimizer=optim)
|
||||
return model, booster, optim
|
||||
booster = Booster(plugin=plugin)
|
||||
model, optimizer, *_ = booster.boost(model=model, optimizer=optimizer)
|
||||
# initialize grads
|
||||
data_iter = iter(
|
||||
[{"input_ids": input_ids, "attention_mask": torch.ones_like(input_ids), "labels": input_ids.clone()}]
|
||||
)
|
||||
booster.execute_pipeline(
|
||||
data_iter,
|
||||
model,
|
||||
lambda outputs, inputs: outputs.loss,
|
||||
optimizer,
|
||||
)
|
||||
|
||||
tmpdirname = broadcast_objects[0]
|
||||
model_dir = os.path.join(tmpdirname, "mixtral_model")
|
||||
hf_model_dir = os.path.join(tmpdirname, "mixtral_hf_model")
|
||||
optim_dir = os.path.join(tmpdirname, "mixtral_optim")
|
||||
|
||||
booster.save_model(model, model_dir, shard=True)
|
||||
dist.barrier()
|
||||
if dist.get_rank() == 0:
|
||||
saved_model = MixtralForCausalLM.from_pretrained(model_dir).cuda()
|
||||
check_model_equal(orig_model, saved_model)
|
||||
# check_model_equal(model, saved_model)
|
||||
saved_model.save_pretrained(hf_model_dir)
|
||||
dist.barrier()
|
||||
# check load model
|
||||
new_model = MixtralForCausalLM(config).cuda()
|
||||
new_optimizer = Adam(new_model.parameters(), lr=1e-3)
|
||||
new_model, new_optimizer, *_ = booster.boost(model=new_model, optimizer=new_optimizer)
|
||||
booster.load_model(new_model, hf_model_dir)
|
||||
check_model_equal(model, new_model)
|
||||
|
||||
# check save optimizer
|
||||
optimizer.step()
|
||||
for group in optimizer.param_groups:
|
||||
group["lr"] = 0.1
|
||||
snapshot = get_optimizer_snapshot(optimizer.unwrap())
|
||||
booster.save_optimizer(optimizer, optim_dir, shard=True)
|
||||
dist.barrier()
|
||||
|
||||
# reset optimizer state
|
||||
for state in optimizer.unwrap().state.values():
|
||||
for v in state.values():
|
||||
if isinstance(v, torch.Tensor):
|
||||
v.zero_()
|
||||
booster.load_optimizer(optimizer, optim_dir)
|
||||
loaded_snapshot = get_optimizer_snapshot(optimizer.unwrap())
|
||||
check_optimizer_snapshot_equal(snapshot, loaded_snapshot, None, model)
|
||||
# Ensure rank 0 waits for all other ranks to finish
|
||||
dist.barrier()
|
||||
|
||||
|
||||
def _test_moe_checkpoint(rank, parallel):
|
||||
model1, booster1, optim1 = get_model(parallel)
|
||||
model2, booster2, optim2 = get_model(parallel)
|
||||
model3, booster3, optim3 = get_model(parallel)
|
||||
|
||||
# param ckpt
|
||||
# shard
|
||||
booster1.save_model(model1, "./tmp_ckpt1", shard=True, size_per_shard=1)
|
||||
booster2.load_model(model2, "./tmp_ckpt1")
|
||||
# unshard
|
||||
booster1.save_model(model1, "./tmp_ckpt1.pth")
|
||||
booster3.load_model(model3, "./tmp_ckpt1.pth")
|
||||
# check
|
||||
check_state_dict_equal(model1.state_dict(), model2.state_dict(), False)
|
||||
check_state_dict_equal(model1.state_dict(), model3.state_dict(), False)
|
||||
|
||||
# optim ckpt
|
||||
criterion = lambda x: x.mean()
|
||||
data = torch.randint(0, 4, (2, 4)).cuda()
|
||||
label = torch.randint(0, 4, (2,)).cuda()
|
||||
if parallel == "hybrid":
|
||||
kwargs = {"pipeline": True, "booster": booster1, "plugin": booster1.plugin}
|
||||
else:
|
||||
kwargs = {}
|
||||
run_fwd_bwd(model1, data, label, criterion, optim1, **kwargs)
|
||||
optim1.step()
|
||||
optim1.zero_grad()
|
||||
# shard
|
||||
booster1.save_optimizer(optim1, "./tmp_ckpt2", shard=True, size_per_shard=1)
|
||||
dist.barrier()
|
||||
booster2.load_optimizer(optim2, "./tmp_ckpt2")
|
||||
# unshard
|
||||
booster1.save_optimizer(optim1, "./tmp_ckpt2.pth")
|
||||
booster3.load_optimizer(optim3, "./tmp_ckpt2.pth")
|
||||
# check
|
||||
check_state_dict_equal(optim1.optim.state_dict(), optim2.optim.state_dict(), False)
|
||||
check_state_dict_equal(optim1.optim.state_dict(), optim3.optim.state_dict(), False)
|
||||
|
||||
if dist.get_rank() == 0:
|
||||
shutil.rmtree("./tmp_ckpt1")
|
||||
shutil.rmtree("./tmp_ckpt2")
|
||||
os.remove("./tmp_ckpt1.pth")
|
||||
os.remove("./tmp_ckpt2.pth")
|
||||
def run_dist(rank: int, world_size: int, port: int):
|
||||
colossalai.launch(rank, world_size, "localhost", port)
|
||||
check_mixtral_moe_layer()
|
||||
|
||||
|
||||
def _run_dist(rank, world_size, port, parallel):
|
||||
colossalai.launch(
|
||||
config=dict(),
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
host="localhost",
|
||||
port=port,
|
||||
backend="nccl",
|
||||
)
|
||||
_test_moe_checkpoint(rank, parallel)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="This is tested in ColossalMOE")
|
||||
@pytest.mark.dist
|
||||
# Test EP + ZeRO + PP
|
||||
@pytest.mark.parametrize("world_size", [4])
|
||||
@pytest.mark.parametrize("parallel", [None, "ep", "ep_zero", "hybrid"])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_moe_checkpoint(world_size, parallel):
|
||||
spawn(_run_dist, world_size, parallel=parallel)
|
||||
def test_mixtral_moe_layer(world_size: int):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_moe_checkpoint(world_size=4, parallel="hybrid")
|
||||
test_mixtral_moe_layer(4)
|
||||
|
Reference in New Issue
Block a user