mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-07-15 08:02:04 +00:00
[tutorial] polish README and OPT files (#1930)
* [tutorial] polish README and OPT files * [tutorial] polish README and OPT files * [tutorial] polish README and OPT files
This commit is contained in:
parent
b0b7a786b7
commit
41868f7605
@ -44,7 +44,7 @@ pip install colossalai==0.1.11+torch1.12cu11.3 -f https://release.colossalai.org
|
||||
- Try sequence parallelism with BERT
|
||||
- Combination of data/pipeline/sequence parallelism
|
||||
- Faster training and longer sequence length
|
||||
- Large Batch Training Optimization
|
||||
- Large Batch Training Optimization
|
||||
- Comparison of small/large batch size with SGD/LARS optimizer
|
||||
- Acceleration from a larger batch size
|
||||
- Auto-Parallelism
|
||||
@ -52,7 +52,7 @@ pip install colossalai==0.1.11+torch1.12cu11.3 -f https://release.colossalai.org
|
||||
- Model tracing + solution solving + runtime communication inserting all in one auto-parallelism system
|
||||
- Try single program, multiple data (SPMD) parallel with auto-parallelism SPMD solver on ResNet50
|
||||
- Fine-tuning and Serving for OPT
|
||||
- Try OPT model imported from Hugging Face with Colossal-AI
|
||||
- Try pre-trained OPT model weights with Colossal-AI
|
||||
- Fine-tuning OPT with limited hardware using ZeRO, Gemini and parallelism
|
||||
- Deploy the fine-tuned model to inference service
|
||||
- Acceleration of Stable Diffusion
|
||||
|
@ -1 +0,0 @@
|
||||
# Fine-tuning and Serving for OPT from Hugging Face
|
@ -1,16 +0,0 @@
|
||||
## Overview
|
||||
This example shows how to use ColossalAI to run huggingface GPT training with Gemini and ZeRO DDP.
|
||||
|
||||
## GPT
|
||||
We use the huggingface transformers GPT2 model. The input data is randonly generated.
|
||||
|
||||
## Our Modifications
|
||||
We adapt the OPT training code to ColossalAI by leveraging Gemini and ZeRO DDP.
|
||||
|
||||
## Quick Start
|
||||
You can launch training by using the following bash script
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
bash run.sh
|
||||
```
|
@ -1,3 +0,0 @@
|
||||
colossalai >= 0.1.10
|
||||
torch >= 1.8.1
|
||||
transformers >= 4.231
|
@ -1 +0,0 @@
|
||||
env OMP_NUM_THREADS=16 torchrun --standalone --nproc_per_node=4 train_gpt_demo.py --tp_degree=2 --placement='cpu' 2>&1 | tee run.log
|
@ -1,241 +0,0 @@
|
||||
from functools import partial
|
||||
from time import time
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from packaging import version
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.nn.parallel import ZeroDDP
|
||||
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ShardSpec
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
from colossalai.zero import ZeroOptimizer
|
||||
from transformers import GPT2Config, GPT2LMHeadModel
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = colossalai.get_default_parser()
|
||||
parser.add_argument(
|
||||
"--tp_degree",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Tensor Parallelism Degree.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--placement",
|
||||
type=str,
|
||||
default='cpu',
|
||||
help="Placement Policy for Gemini.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
## Parameter Sharding Strategies for Tensor Parallelism
|
||||
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
|
||||
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
||||
if param.process_group.tp_world_size() == 1:
|
||||
param.set_process_group(pg)
|
||||
param.set_tensor_spec(*spec)
|
||||
|
||||
|
||||
def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
|
||||
split_param_single_dim_tp1d(0, param, pg)
|
||||
|
||||
|
||||
def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
|
||||
split_param_single_dim_tp1d(-1, param, pg)
|
||||
|
||||
|
||||
## Define the Model and Loss Based on Huggingface transformers GPT2LMHeadModel
|
||||
class GPTLMModel(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
hidden_size=768,
|
||||
num_layers=12,
|
||||
num_attention_heads=12,
|
||||
max_seq_len=1024,
|
||||
vocab_size=50257,
|
||||
checkpoint=False):
|
||||
super().__init__()
|
||||
self.checkpoint = checkpoint
|
||||
self.model = GPT2LMHeadModel(
|
||||
GPT2Config(n_embd=hidden_size,
|
||||
n_layer=num_layers,
|
||||
n_head=num_attention_heads,
|
||||
n_positions=max_seq_len,
|
||||
n_ctx=max_seq_len,
|
||||
vocab_size=vocab_size))
|
||||
if checkpoint:
|
||||
self.model.gradient_checkpointing_enable()
|
||||
|
||||
def forward(self, input_ids, attention_mask):
|
||||
# Only return lm_logits
|
||||
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]
|
||||
|
||||
|
||||
class GPTLMLoss(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
def forward(self, logits, labels):
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||||
|
||||
|
||||
## Randomly Generated Data
|
||||
def get_data(batch_size, seq_len, vocab_size):
|
||||
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
return input_ids, attention_mask
|
||||
|
||||
|
||||
def gpt2_medium(checkpoint=False):
|
||||
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)
|
||||
|
||||
|
||||
def gpt2_xl(checkpoint=True):
|
||||
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint)
|
||||
|
||||
|
||||
def gpt2_10b(checkpoint=True):
|
||||
return GPTLMModel(hidden_size=4096, num_layers=50, num_attention_heads=16, checkpoint=checkpoint)
|
||||
|
||||
|
||||
def get_cpu_mem():
|
||||
return psutil.Process().memory_info().rss / 1024**2
|
||||
|
||||
|
||||
def get_gpu_mem():
|
||||
return torch.cuda.memory_allocated() / 1024**2
|
||||
|
||||
|
||||
def get_mem_info(prefix=''):
|
||||
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'
|
||||
|
||||
|
||||
def get_tflops(model_numel, batch_size, seq_len, step_time):
|
||||
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
|
||||
|
||||
|
||||
# Tensor Parallel
|
||||
def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
|
||||
"""tensor_parallelize
|
||||
Sharding the Model Parameters.
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): a torch module to be sharded
|
||||
"""
|
||||
for mn, module in model.named_modules():
|
||||
for pn, param in module.named_parameters(recurse=False):
|
||||
# set process group for all parameters
|
||||
param.set_process_group(pg)
|
||||
|
||||
if 'mlp.c_fc' in mn:
|
||||
if 'weight' in pn or 'bias' in pn:
|
||||
split_param_col_tp1d(param, pg) # colmn slice
|
||||
# keep the shape of the output from c_fc
|
||||
param.compute_spec.set_output_replicate(False)
|
||||
elif 'mlp.c_proj' in mn:
|
||||
if 'weight' in pn:
|
||||
split_param_row_tp1d(param, pg) # row slice
|
||||
elif 'wte' in mn or 'wpe' in mn:
|
||||
split_param_col_tp1d(param, pg) # colmn slice
|
||||
elif 'c_attn' in mn or 'c_proj' in mn:
|
||||
split_param_col_tp1d(param, pg) # colmn slice
|
||||
|
||||
|
||||
# Gemini + ZeRO DDP
|
||||
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
|
||||
cai_version = colossalai.__version__
|
||||
if version.parse(cai_version) > version.parse("0.1.10"):
|
||||
from colossalai.nn.parallel import GeminiDDP
|
||||
model = GeminiDDP(model,
|
||||
device=get_current_device(),
|
||||
placement_policy=placememt_policy,
|
||||
pin_memory=True,
|
||||
search_range_mb=32)
|
||||
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
|
||||
from colossalai.gemini import ChunkManager, GeminiManager
|
||||
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
|
||||
gemini_manager = GeminiManager(placememt_policy, chunk_manager)
|
||||
chunk_manager = ChunkManager(chunk_size,
|
||||
pg,
|
||||
enable_distributed_storage=True,
|
||||
init_device=GeminiManager.get_default_device(placememt_policy))
|
||||
model = ZeroDDP(model, gemini_manager)
|
||||
else:
|
||||
raise NotImplemented(f"CAI version {cai_version} is not supported")
|
||||
return model
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
BATCH_SIZE = 8
|
||||
SEQ_LEN = 1024
|
||||
VOCAB_SIZE = 50257
|
||||
NUM_STEPS = 10
|
||||
|
||||
disable_existing_loggers()
|
||||
colossalai.launch_from_torch(config={})
|
||||
|
||||
pg = ProcessGroup(tp_degree=args.tp_degree)
|
||||
|
||||
logger = get_dist_logger()
|
||||
logger.info(get_mem_info(), ranks=[0])
|
||||
|
||||
# build GPT model
|
||||
with ColoInitContext(device=get_current_device()):
|
||||
model = gpt2_medium(checkpoint=True)
|
||||
|
||||
numel = sum([p.numel() for p in model.parameters()])
|
||||
logger.info(f'Model numel: {numel}', ranks=[0])
|
||||
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
|
||||
|
||||
# Tensor Parallelism (TP)
|
||||
tensor_parallelize(model, pg)
|
||||
# Gemini + ZeRO DP, Note it must be used after TP
|
||||
model = gemini_zero_dpp(model, pg, args.placement)
|
||||
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
|
||||
|
||||
# build criterion
|
||||
criterion = GPTLMLoss()
|
||||
|
||||
# build optimizer
|
||||
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||||
optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**5)
|
||||
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0])
|
||||
|
||||
torch.cuda.synchronize()
|
||||
model.train()
|
||||
for n in range(NUM_STEPS):
|
||||
# we just use randomly generated data here
|
||||
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LEN, VOCAB_SIZE)
|
||||
optimizer.zero_grad()
|
||||
start = time()
|
||||
outputs = model(input_ids, attn_mask)
|
||||
loss = criterion(outputs, input_ids)
|
||||
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Forward '), ranks=[0])
|
||||
optimizer.backward(loss)
|
||||
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Backward '), ranks=[0])
|
||||
optimizer.step()
|
||||
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Optimizer step '), ranks=[0])
|
||||
step_time = time() - start
|
||||
logger.info(
|
||||
f'[{n+1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}',
|
||||
ranks=[0])
|
||||
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user