mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-10 13:30:19 +00:00
[kernel] added jit warmup (#1792)
This commit is contained in:
@@ -1,5 +1,11 @@
|
||||
import torch
|
||||
|
||||
from colossalai.nn.layer.colossalai_layer import Embedding, Linear
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
from .bias_dropout_add import bias_dropout_add_fused_train
|
||||
from .bias_gelu import bias_gelu_impl
|
||||
|
||||
JIT_OPTIONS_SET = False
|
||||
|
||||
|
||||
@@ -30,3 +36,44 @@ def set_jit_fusion_options():
|
||||
torch._C._jit_override_can_fuse_on_gpu(True)
|
||||
|
||||
JIT_OPTIONS_SET = True
|
||||
|
||||
|
||||
def warmup_jit_fusion(batch_size: int,
|
||||
hidden_size: int,
|
||||
seq_length: int = 512,
|
||||
vocab_size: int = 32768,
|
||||
dtype: torch.dtype = torch.float32):
|
||||
""" Compilie JIT functions before the main training steps """
|
||||
|
||||
embed = Embedding(vocab_size, hidden_size).to(get_current_device())
|
||||
linear_1 = Linear(hidden_size, hidden_size * 4, skip_bias_add=True).to(get_current_device())
|
||||
linear_2 = Linear(hidden_size * 4, hidden_size, skip_bias_add=True).to(get_current_device())
|
||||
|
||||
x = torch.randint(vocab_size, (batch_size, seq_length), dtype=torch.long, device=get_current_device())
|
||||
x = embed(x)
|
||||
y, y_bias = linear_1(x)
|
||||
z, z_bias = linear_2(y)
|
||||
# Warmup JIT fusions with the input grad_enable state of both forward
|
||||
# prop and recomputation
|
||||
for bias_grad, input_grad in zip([True, True], [False, True]):
|
||||
for _ in range(10):
|
||||
bias = torch.rand_like(y_bias, dtype=dtype, device=get_current_device())
|
||||
input_ = torch.rand_like(y, dtype=dtype, device=get_current_device())
|
||||
bias.requires_grad, input_.requires_grad = bias_grad, input_grad
|
||||
bias_gelu_impl(input_, bias)
|
||||
|
||||
# Warmup fused bias+dropout+add
|
||||
dropout_rate = 0.1
|
||||
# Warmup JIT fusions with the input grad_enable state of both forward
|
||||
# prop and recomputation
|
||||
for input_grad, bias_grad, residual_grad in zip([False, True], [True, True], [True, True]):
|
||||
for _ in range(10):
|
||||
input_ = torch.rand_like(z, dtype=dtype, device=get_current_device())
|
||||
residual = torch.rand_like(x, dtype=dtype, device=get_current_device())
|
||||
bias = torch.rand_like(z_bias, dtype=dtype, device=get_current_device())
|
||||
input_.requires_grad = input_grad
|
||||
bias.requires_grad = bias_grad
|
||||
residual.requires_grad = residual_grad
|
||||
bias_dropout_add_fused_train(input_, bias, residual, dropout_rate)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
Reference in New Issue
Block a user