mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-11 05:49:55 +00:00
[Feature] Distributed optimizers: Lamb, Galore, CAME and Adafactor (#5694)
* [feat] Add distributed lamb; minor fixes in DeviceMesh (#5476) * init: add dist lamb; add debiasing for lamb * dist lamb tester mostly done * all tests passed * add comments * all tests passed. Removed debugging statements * moved setup_distributed inside plugin. Added dist layout caching * organize better --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [hotfix] Improve tester precision by removing ZeRO on vanilla lamb (#5576) Co-authored-by: Edenzzzz <wtan45@wisc.edu> * [optim] add distributed came (#5526) * test CAME under LowLevelZeroOptimizer wrapper * test CAME TP row and col pass * test CAME zero pass * came zero add master and worker param id convert * came zero test pass * came zero test pass * test distributed came passed * reform code, Modify some expressions and add comments * minor fix of test came * minor fix of dist_came and test * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * minor fix of dist_came and test * rebase dist-optim * rebase dist-optim * fix remaining comments * add test dist came using booster api --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [optim] Distributed Adafactor (#5484) * [feature] solve conflict; update optimizer readme; * [feature] update optimize readme; * [fix] fix testcase; * [feature] Add transformer-bert to testcase;solve a bug related to indivisible shape (induction in use_zero and tp is row parallel); * [feature] Add transformers_bert model zoo in testcase; * [feature] add user documentation to docs/source/feature. * [feature] add API Reference & Sample to optimizer Readme; add state check for bert exam; * [feature] modify user documentation; * [fix] fix readme format issue; * [fix] add zero=0 in testcase; cached augment in dict; * [fix] fix percision issue; * [feature] add distributed rms; * [feature] remove useless comment in testcase; * [fix] Remove useless test; open zero test; remove fp16 test in bert exam; * [feature] Extract distributed rms function; * [feature] add booster + lowlevelzeroPlugin in test; * [feature] add Start_with_booster_API case in md; add Supporting Information in md; * [fix] Also remove state movement in base adafactor; * [feature] extract factor function; * [feature] add LowLevelZeroPlugin test; * [fix] add tp=False and zero=True in logic; * [fix] fix use zero logic; * [feature] add row residue logic in column parallel factor; * [feature] add check optim state func; * [feature] Remove duplicate logic; * [feature] update optim state check func and percision test bug; * [fix] update/fix optim state; Still exist percision issue; * [fix] Add use_zero check in _rms; Add plugin support info in Readme; Add Dist Adafactor init Info; * [feature] removed print & comments in utils; * [feature] uodate Readme; * [feature] add LowLevelZeroPlugin test with Bert model zoo; * [fix] fix logic in _rms; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [fix] remove comments in testcase; * [feature] add zh-Han Readme; --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] refractor dist came; fix percision error; add low level zero test with bert model zoo; (#5676) * [feature] daily update; * [fix] fix dist came; * [feature] refractor dist came; fix percision error; add low level zero test with bert model zoo; * [fix] open rms; fix low level zero test; fix dist came test function name; * [fix] remove redundant test; * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Feature] Add Galore (Adam, Adafactor) and distributed GaloreAdamW8bit (#5570) * init: add dist lamb; add debiasing for lamb * dist lamb tester mostly done * all tests passed * add comments * all tests passed. Removed debugging statements * moved setup_distributed inside plugin. Added dist layout caching * organize better * update comments * add initial distributed galore * add initial distributed galore * add galore set param utils; change setup_distributed interface * projected grad precision passed * basic precision tests passed * tests passed; located svd precision issue in fwd-bwd; banned these tests * Plugin DP + TP tests passed * move get_shard_dim to d_tensor * add comments * remove useless files * remove useless files * fix zero typo * improve interface * remove moe changes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix import * fix deepcopy * update came & adafactor to main * fix param map * fix typo --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * [Hotfix] Remove one buggy test case from dist_adafactor for now (#5692) Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> --------- Co-authored-by: Edenzzzz <wtan45@wisc.edu> Co-authored-by: chongqichuizi875 <107315010+chongqichuizi875@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: duanjunwen <54985467+duanjunwen@users.noreply.github.com> Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
This commit is contained in:
303
tests/test_optimizer/test_dist_lamb.py
Normal file
303
tests/test_optimizer/test_dist_lamb.py
Normal file
@@ -0,0 +1,303 @@
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.cluster import DistCoordinator, ProcessGroupMesh
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.nn.optimizer import DistributedLamb, Lamb
|
||||
from colossalai.tensor.d_tensor import get_shard_dim_1d, is_distributed_tensor
|
||||
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from colossalai.zero import LowLevelZeroOptimizer
|
||||
from tests.kit.model_zoo import model_zoo
|
||||
from tests.test_optimizer._utils import check_optim_states, run_bert_test
|
||||
|
||||
_ALLOWED_P_G_TYPES = [
|
||||
(torch.float, torch.float), # pure fp32
|
||||
(torch.float, torch.half), # fp16 amp
|
||||
(torch.float, torch.bfloat16), # bfloat16 amp
|
||||
]
|
||||
|
||||
_IN_DIM = 32
|
||||
_HID_DIM = 128
|
||||
_N_STEP = 3
|
||||
_SEED = 1024
|
||||
coordinator = None
|
||||
|
||||
Net, data_gen, *_ = next(iter(model_zoo.get_sub_registry("simple_mlp").values()))
|
||||
TPNet, *_ = next(iter(model_zoo.get_sub_registry("simple_tp_mlp").values()))
|
||||
|
||||
|
||||
def assert_distributed_close(tp_model, torch_model, rtol, atol, tp_group):
|
||||
rank = dist.get_rank(tp_group)
|
||||
tp_size = dist.get_world_size(tp_group)
|
||||
|
||||
for (name, p), torch_p in zip(tp_model.named_parameters(), torch_model.parameters()):
|
||||
# if overflow, the weight won't be updated. so there will be no nan in p
|
||||
assert not torch.isnan(p).any()
|
||||
try:
|
||||
if is_distributed_tensor(p):
|
||||
split_dim = get_shard_dim_1d(p)
|
||||
torch_p = torch_p.chunk(tp_size, dim=split_dim)[rank]
|
||||
|
||||
assert_close(p.float(), torch_p, rtol=rtol, atol=atol)
|
||||
except AssertionError as e:
|
||||
print(f"grad mismatch in {name}")
|
||||
raise e
|
||||
|
||||
|
||||
def setup_param_groups(bert_model: nn.Module) -> list:
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in bert_model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.1,
|
||||
},
|
||||
{
|
||||
"params": [p for n, p in bert_model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
return optimizer_grouped_parameters
|
||||
|
||||
|
||||
def force_assign_grad(p, g_dtype, grad=None):
|
||||
"""avoid inconsistent grad and param dtype error"""
|
||||
orig_p = p.data
|
||||
p.data = torch.randn_like(p, device=orig_p.device, dtype=g_dtype) if grad == None else grad
|
||||
p.grad = p.data
|
||||
p.data = orig_p
|
||||
|
||||
|
||||
def set_dist_grad(
|
||||
dist_module: nn.Module,
|
||||
torch_model: nn.Module,
|
||||
g_dtype: torch.dtype,
|
||||
group: dist.ProcessGroup,
|
||||
) -> None:
|
||||
"""
|
||||
Set grads chunks for Tensor Parallel or ZeRO DP.
|
||||
We do not need a separate treatment for ZeRO,
|
||||
as the LowLevelOptimizer takes care of reduce-scattering grads.
|
||||
"""
|
||||
rank = dist.get_rank(group)
|
||||
world_size = dist.get_world_size(group)
|
||||
|
||||
for p, torch_p in zip(dist_module.parameters(), torch_model.parameters()):
|
||||
if torch_p.grad is None:
|
||||
# avoid inconsistent grad and param dtype error
|
||||
force_assign_grad(torch_p, g_dtype)
|
||||
else:
|
||||
torch_p.grad += torch.randn_like(torch_p, device=torch_p.device, dtype=g_dtype)
|
||||
|
||||
if p.grad is None:
|
||||
force_assign_grad(p, g_dtype)
|
||||
|
||||
if is_distributed_tensor(p):
|
||||
split_dim = get_shard_dim_1d(p)
|
||||
# Add grads only to the correctly split chunk
|
||||
force_assign_grad(p, g_dtype, torch_p.grad.chunk(world_size, dim=split_dim)[rank])
|
||||
# assert_close(p.grad, torch_p.grad.chunk(world_size, dim=split_dim)[rank])
|
||||
else:
|
||||
force_assign_grad(p, g_dtype, torch_p.grad)
|
||||
|
||||
|
||||
@parameterize("p_g_dtype", _ALLOWED_P_G_TYPES)
|
||||
@parameterize("bias_correction", [False, True])
|
||||
@parameterize("tp_zero_size", [(1, 4), (4, 1), (2, 2)])
|
||||
def run_dist_lamb_basic(
|
||||
bias_correction: bool, p_g_dtype: tuple[torch.dtype, torch.dtype], tp_zero_size: tuple[int, int]
|
||||
) -> None:
|
||||
"""Test without forward"""
|
||||
p_dtype, g_dtype = p_g_dtype
|
||||
tp_size, zero_size = tp_zero_size
|
||||
|
||||
# Set distributed groups
|
||||
rank = dist.get_rank()
|
||||
clear_layout_converter() # Ensure correct sharding
|
||||
proc_mesh = ProcessGroupMesh(tp_size, zero_size)
|
||||
tp_group = proc_mesh.get_group_along_axis(0)
|
||||
|
||||
tp_rank = dist.get_rank(tp_group)
|
||||
seed_all(_SEED) # Fix model init
|
||||
torch_model = Net(in_dim=_IN_DIM, hid_dim=_HID_DIM, identity=True).to(rank)
|
||||
tp_model = TPNet(torch_model.fc0, torch_model.fc1, torch_model.fc2, tp_group).to(rank)
|
||||
# Ensure equal weight init
|
||||
assert_close(
|
||||
torch_model.fc1.weight[tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size],
|
||||
tp_model.fc1.weight,
|
||||
)
|
||||
assert_close(
|
||||
torch_model.fc2.weight[:, tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size],
|
||||
tp_model.fc2.weight,
|
||||
)
|
||||
|
||||
# Set up optimizers
|
||||
lr = 1e-3
|
||||
beta1, beta2 = 0.9, 0.999
|
||||
eps = 1e-8
|
||||
torch_optim = Lamb(
|
||||
setup_param_groups(torch_model), lr=lr, betas=(beta1, beta2), eps=eps, bias_correction=bias_correction
|
||||
)
|
||||
optim = DistributedLamb(
|
||||
setup_param_groups(tp_model),
|
||||
lr=lr,
|
||||
betas=(beta1, beta2),
|
||||
eps=eps,
|
||||
bias_correction=bias_correction,
|
||||
)
|
||||
optim.setup_distributed(tp_group)
|
||||
|
||||
rtol, atol = 8e-7, 8e-7
|
||||
if p_dtype is torch.float16 or g_dtype is torch.float16:
|
||||
rtol, atol = 1e-6, 1e-6
|
||||
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16:
|
||||
rtol, atol = 2e-6, 2e-6
|
||||
|
||||
for i in range(_N_STEP):
|
||||
seed_all(_SEED + i) # NOTE: having only one manual_seed above doesn't work?
|
||||
set_dist_grad(tp_model, torch_model, g_dtype, tp_group)
|
||||
|
||||
torch_optim.step()
|
||||
optim.step()
|
||||
torch_optim.zero_grad()
|
||||
optim.zero_grad()
|
||||
try:
|
||||
assert_distributed_close(tp_model, torch_model, rtol, atol, tp_group)
|
||||
except Exception as e:
|
||||
coordinator.print_on_master(
|
||||
f"step {i + 1}: bias_correction: {bias_correction}, p_g_dtype: {p_g_dtype}, tp_zero_size: {tp_zero_size}"
|
||||
)
|
||||
raise e
|
||||
|
||||
|
||||
@parameterize("p_g_dtype", _ALLOWED_P_G_TYPES)
|
||||
@parameterize("bias_correction", [False, True])
|
||||
@parameterize("tp_zero_size", [(2, 2), (4, 1), (1, 4)])
|
||||
def run_dist_lamb_fwd_bwd(
|
||||
bias_correction: bool, p_g_dtype: tuple[torch.dtype, torch.dtype], tp_zero_size: tuple[int, int]
|
||||
) -> None:
|
||||
p_dtype, g_dtype = p_g_dtype
|
||||
tp_size, zero_size = tp_zero_size
|
||||
|
||||
# Set distributed groups
|
||||
rank = dist.get_rank()
|
||||
proc_mesh = ProcessGroupMesh(tp_size, zero_size)
|
||||
tp_group = proc_mesh.get_group_along_axis(0)
|
||||
dp_group = proc_mesh.get_group_along_axis(1)
|
||||
tp_rank = dist.get_rank(tp_group)
|
||||
|
||||
seed_all(_SEED)
|
||||
clear_layout_converter() # Ensure correct sharding
|
||||
torch_model = Net(_IN_DIM, _HID_DIM).to(rank)
|
||||
tp_model = TPNet(torch_model.fc0, torch_model.fc1, torch_model.fc2, tp_group).to(rank)
|
||||
|
||||
assert_close(
|
||||
torch_model.fc1.weight[tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size],
|
||||
tp_model.fc1.weight,
|
||||
)
|
||||
assert_close(
|
||||
torch_model.fc2.weight[:, tp_rank * _HID_DIM // tp_size : (tp_rank + 1) * _HID_DIM // tp_size],
|
||||
tp_model.fc2.weight,
|
||||
)
|
||||
|
||||
# Set up optimizers
|
||||
lr = 1e-3
|
||||
beta1, beta2 = 0.9, 0.999
|
||||
eps = 1e-8
|
||||
torch_optim = Lamb(
|
||||
setup_param_groups(torch_model), lr=lr, betas=(beta1, beta2), eps=eps, bias_correction=bias_correction
|
||||
)
|
||||
optim = DistributedLamb(
|
||||
setup_param_groups(tp_model),
|
||||
lr=lr,
|
||||
betas=(beta1, beta2),
|
||||
eps=eps,
|
||||
bias_correction=bias_correction,
|
||||
)
|
||||
|
||||
# Setup distributed optimizer
|
||||
if zero_size > 1:
|
||||
optim = LowLevelZeroOptimizer(
|
||||
optim,
|
||||
overlap_communication=True,
|
||||
initial_scale=128,
|
||||
partition_grad=True,
|
||||
dp_process_group=dp_group,
|
||||
verbose=True,
|
||||
)
|
||||
shard_to_param = optim._param_store.master_to_working_param
|
||||
optim.optim.setup_distributed(tp_group, dp_group, shard_to_param, is_zero=True)
|
||||
else:
|
||||
optim.setup_distributed(tp_group)
|
||||
|
||||
rtol, atol = 8e-7, 8e-7
|
||||
if p_dtype is torch.float16 or g_dtype is torch.float16:
|
||||
rtol, atol = 1e-6, 1e-6
|
||||
if p_dtype is torch.bfloat16 or g_dtype is torch.bfloat16:
|
||||
rtol, atol = 2e-6, 2e-6
|
||||
|
||||
seed_all(_SEED) # NOTE: having only one manual_seed above doesn't work?
|
||||
x = data_gen()
|
||||
x = x.cuda().to(dtype=p_dtype)
|
||||
|
||||
out_tp = tp_model(x)
|
||||
out = torch_model(x)
|
||||
try:
|
||||
assert_close(out, out_tp, rtol=rtol, atol=atol)
|
||||
except Exception as e:
|
||||
coordinator.print_on_master(
|
||||
f"bias_correction: {bias_correction}, p_g_dtype: {p_g_dtype}, tp_zero_size: {tp_zero_size}"
|
||||
)
|
||||
raise e
|
||||
|
||||
if zero_size > 1:
|
||||
optim.backward(out_tp.sum())
|
||||
out.sum().backward()
|
||||
else:
|
||||
out_tp.sum().backward()
|
||||
out.sum().backward()
|
||||
|
||||
torch_optim.step()
|
||||
optim.step()
|
||||
dist.barrier()
|
||||
torch_optim.zero_grad()
|
||||
optim.zero_grad()
|
||||
try:
|
||||
assert_distributed_close(tp_model, torch_model, rtol, atol, tp_group)
|
||||
check_optim_states(getattr(torch_optim, "optim", torch_optim), getattr(optim, "optim", optim))
|
||||
except Exception as e:
|
||||
coordinator.print_on_master(
|
||||
f"bias_correction: {bias_correction}, p_g_dtype: {p_g_dtype}, tp_zero_size: {tp_zero_size}"
|
||||
)
|
||||
raise e
|
||||
|
||||
|
||||
def check_dist_lamb(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
global coordinator
|
||||
coordinator = DistCoordinator()
|
||||
|
||||
run_dist_lamb_basic()
|
||||
coordinator.print_on_master("Basic tests passed")
|
||||
|
||||
run_dist_lamb_fwd_bwd()
|
||||
coordinator.print_on_master("Forward-backward tests passed")
|
||||
|
||||
run_bert_test(optim_class=Lamb, sharded_optim_class=DistributedLamb)
|
||||
print(f"rank {rank} tests passed :)")
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_dist_lamb():
|
||||
spawn(check_dist_lamb, nprocs=4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_dist_lamb()
|
Reference in New Issue
Block a user