[fx]refactor tracer (#1335)

This commit is contained in:
YuliangLiu0306
2022-07-19 15:50:42 +08:00
committed by GitHub
parent bf5066fba7
commit 4631fef8a0
8 changed files with 50 additions and 48 deletions

View File

@@ -1,5 +1,5 @@
from typing import List, Union, Any
from ..proxy import ColoProxy, MetaDeviceAttribute
from ..proxy import ColoProxy, ColoAttribute
__all__ = ['is_element_in_list', 'extract_meta']
@@ -19,10 +19,11 @@ def is_element_in_list(elements: Union[List[Any], Any], list_: List[Any]):
def extract_meta(*args, **kwargs):
def _convert(val):
if isinstance(val, MetaDeviceAttribute):
return 'meta'
elif isinstance(val, ColoProxy):
if isinstance(val, ColoProxy):
return val.meta_data
elif isinstance(val, (list, tuple)):
return type(val)([_convert(ele) for ele in val])
return val
new_args = [_convert(val) for val in args]

View File

@@ -1,6 +1,7 @@
import operator
import torch
from ..registry import meta_patched_function
from colossalai.fx.proxy import ColoProxy
@meta_patched_function.register(operator.getitem)
@@ -14,6 +15,30 @@ def operator_getitem(a, b):
return concrete
return t
def _slice_convert(slice_obj):
attrs = {'start': slice_obj.start, 'stop': slice_obj.stop, 'step': slice_obj.step}
new_attrs = _slice_attr_convert(attrs)
attr_dict_to_tuple = (new_attrs['start'], new_attrs['stop'], new_attrs['step'])
return slice(*attr_dict_to_tuple)
def _slice_attr_convert(attrs):
new_attrs = {}
for key, value in attrs.items():
if isinstance(value, ColoProxy):
new_attrs[key] = value.meta_data
else:
new_attrs[key] = value
return new_attrs
if isinstance(b, tuple):
b = list(b)
for index, element in enumerate(b):
if isinstance(element, slice):
b[index] = _slice_convert(element)
b = tuple(b)
elif isinstance(b, slice):
b = _slice_convert(b)
if isinstance(a, torch.Tensor):
# TODO: infer shape without performing the computation.
if isinstance(b, tuple):
@@ -21,4 +46,12 @@ def operator_getitem(a, b):
else:
b = to_concrete(b)
return operator.getitem(torch.empty_like(a, device="cpu"), b).to("meta")
if isinstance(a, ColoProxy):
# TODO: infer shape without performing the computation.
if isinstance(b, tuple):
b = tuple(map(to_concrete, b))
else:
b = to_concrete(b)
return operator.getitem(torch.empty_like(a.meta_data, device="cpu"), b).to("meta")
return operator.getitem(a, b)